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1 Introduction

Environmental Engel curves (EECs) describe how household consumption of emissions or pollu-
tion (inherent in goods) varies with its income. Their shape has crucial welfare implications: Jacobs
and van der Ploeg (2019) show that , under mild conditions, the optimal carbon tax is equal to the
Pigouvian level as long as EECs are linear. This holds true even when poorer households spend a
larger fraction of their income emissions or pollution and the government values redistribution On
the other hand, if EECs are non-linear, the optimal carbon tax needs to be adjusted and might be
lower than the Pigouvian level.

Existing approaches to estimate the shape of EECs based on household micro-data rely on re-
peated cross-sections (Weber andMatthews, 2008; Levinson and O’Brien, 2019; Sager, 2019; Zhang,
Shi, Wang, Xue, Song and Sun, 2020). In these studies, researchers typically regress their environ-
mental measure of interest such as greenhouse house gas (GHG) or air pollution consumption on
income as well as socioeconomic characteristics. Since EECs are structural relationships between
income and consumption, keeping prices fixed, an implicit assumption in these regressions is that
there is no omitted variable problem. Otherwise, potential omitted variables, such as household
preferences that are correlated with income and consumption, would nullify the structural inter-
pretation of the EECs and introduce bias.

This paper constructs a novel panel dataset which allows the inclusion of household specific
effects in the estimation regression and thus to control for time-invariant household characteristics.
The main goal is to preserve the structural interpretation of the EEC and to reduce potential endo-
geneity issues in its estimation, which is not possible with pooled data or a repeated cross-section.
For instance, recent studies find evidence that a codependence between income and consumption
preferences exist (Alan, Browning and Ejrnæs, 2018; Arellano, Blundell, Bonhomme and Light,
2023). The panel structure of the data, however, to the extent that these preferences do not change
over time, can take care of this unobserved omitted variable. Ultimately, the research question of
this paper is: What is the shape of Environmental Engel Curves?

I find that, when including household fixed effects to control for time-invariant unobserved
omitted variables, EECs are flatter and closer to linearity than standard OLS estimates, which rely
on cross-sectional data. Moreover, these estimates also imply that the gap in the income elasticity
of GHG consumption between poor and rich households is smaller. Overall, this suggests both that
the optimal carbon tax is closer to a Pigouvian tax and that progressive redistribution of income
gives rise to a smaller increase aggregate GHG consumption than previously considered.

Construction of the dataset(s) The key idea to construct this novel dataset is to create a mapping
between twoUS household surveys - the Consumer Expenditure Survey (CEX) and the Panel Study
of Income Dynamics (PSID). While the idea to impute consumption expenditures itself is not new,
but has been used, among other things, to study the pass-through of income to consumption in-
equality (Blundell, Pistaferri and Preston, 2008), my paper is the first to use it for greenhouse gas
consumption to get a better understanding of the shape of EECs. On a broad level, I implement two
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data-linking steps. First, I create a CEX dataset that contains the GHG emitted when producing the
households’ consumption basket using the methodology of Levinson and O’Brien (2019), Second, I
compute GHG coefficients (GHG consumption per dollar spent) on the household level and impute
this measure to the PSID. Given that the PSID has introduced a measure of consumption expendi-
ture in 1999, I can then compute household GHG consumption by multiplying the imputed GHG
coefficient with observed consumption.

The imputationmethodology I use ismultiple hot deck imputation as proposed in Cranmer and
Gill (2013). The idea is to compute a distance measure, called "affinity score", between observable
household demographic characteristics in the CEX the PSID. For every observation in the PSID,
the procedure chooses the observation in the CEX with the highest affinity score and matches the
corresponding GHG coefficient. It is possible that several observations in the CEX match. If this is
the case, the CEX observation is chosen randomly. Therefore, I repeat this imputation procedure
many times and eventually generate multiple (distinct) datasets. I validate the imputation proce-
dure and warrant the comparability between PSID and CEX based on demographic characteristics
as well as expenditures. Matching consumption survey data in this way is themainmethodological
contribution of this paper.

The final panel datasets contain the standard PSID variables as well as the measure for green-
house gas consumption, which is different for every imputed dataset. In particular, it allows me to
study the relationship between total greenhouse gas consumption and income, that is carving out
the shape of the EEC, while controlling for both i) time-invariant household specific effects and ii)
wealth of households. To the best of my knowledge, this paper is the first to do so usingmicro-data.

In descriptive terms, I find that three expenditure categories account for almost all of total GHG
consumption of US households: housing (incl. utilities), transportation, and food expenditure. In
sum, they make up approximately 95% of measured GHG and this number is very robust in all
imputed datasets. Vacation expenditure comes fourth with approximately 3%.

Estimation and results I follow the literature and estimate parametric EECs using a model which
is linear-quadratic in income. Using the imputed data with this methodology and estimating it
with OLS, I recover three established facts (Levinson and O’Brien, 2019; Sager, 2019). First, EECs
are upward sloping: richer households consume more GHG in absolute terms. Second, EECs are
concave: relative to their income, richer households consume less GHG. Third, EECs shift down
over time: household consumption baskets become greener over time. I interpret these results as
further validation of my imputation strategy.

The panel data enables me to examine the difference between estimating the linear model with
ordinary least squares (OLS) compared to fixed effects (FE) estimation. I estimate the model with
both methods for all datasets and find that the FE estimates of the coefficient on (linear) income are
about half of the OLS estimates. Moreover, the FE estimates on quadratic income are, on average
and in absolute terms, also smaller than the OLS counterparts, however there is some overlap in
the distribution of estimates.
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These results suggest that the bias of omitting time-invariant variables is pushing up OLS esti-
mates, making EECs steeper and more concave. However, it has been recognized in the literature
that FE estimation amplifies measurement error and thus attenuation bias, that is, a bias of coeffi-
cients towards zero (Griliches andHausman, 1986). To exclude this possibility, I provide suggestive
evidence based on the comparison of OLS, first difference (FD), and FE estimates as well as higher
order differences that this is not the case in my framework. In particular, theory suggests that the
bias is stronger for FD estimates than FE estimates. However, I find that the former coefficients are
larger than the latter, i.e. less close to zero. Moreover, the results from higher order differences are
not significantly different from each other.

Based on the estimated model, I compute income elasticities of GHG consumption. I find elas-
ticities below one over the entire income distribution: GHG consumption is a necessity. Again, I
compare OLS and FE estimates over all imputed datasets. According to the (averaged) OLS esti-
mates, households earning income of 51,000$ (expressed in 2012 dollars) have an income elasticity
of about 0.27, compared to the (averaged) FE estimates of about 0.12. Income elasticities for rich
households (> 300,000$) flatten out at 0.6 (OLS) and at 0.33 (FE), respectively.

While the elasticity estimates in the OLS case seem to be quite robust over the entire range of in-
come, variation over different datasets is larger when themodel is estimated using FE. For instance,
going back to the household with 51,000$ in earnings, the estimated 10th percentile elasticity over
all datasets is 0.09, while the 90th percentile is about 0.15. This difference is increasing with in-
come and reaches 0.21 for households with 500,000$ in earnings. For comparison, the difference in
percentiles for the OLS estimates at this level of income is 0.02.

An immediate policy implication of these elasticity estimates refers to the "equity pollution
dilemma" (Heerink, Mulatu and Bulte, 2001; Sager, 2019): redistributing income from rich to poor
householdsmight increase aggregateGHGemissions. Under the FE estimates, however, this dilemma
is attenuated as the difference in elasticities between poor and rich income households is not as
large as previously estimated. Moreover, redistributing carbon tax revenue to poorer households
to alleviate its regressive impact would have weaker second-round effects on aggregate emissions.

Finally, I study income elasticities for different GHG consumption categories to examine poten-
tial heterogeneities in expenditure patterns. Thereby, I focus on the three main categories housing,
transportation, and food. Both housing and transportation exhibit a hump-shaped income elas-
ticity, whereas the income elasticity of food is increasing for all income levels. Quantitatively, the
elasticity on transportation is lower than housing and food, respectively.

Knowing the income elasticities of different consumption goods is informative for policymakers
when they weigh equity and efficiency concerns of carbon taxation, which are present under non-
linear Engel curves (Jacobs and van der Ploeg, 2019). In other words, from a non-environmental
point of view, carbon tax differentiation based on the type of product might be optimal. General
arguments of commodity tax differentiation apply.
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Related literature The present paper relates to a burgeoning literature that estimates EECs from
householdmicro-data. My paper buildsmost notably on Levinson andO’Brien (2019) who connect
CEX data to IO tables and thus firm emissions data in a tremendous data linking effort. They use
their dataset to estimate EECs with respect to air pollution measures and decompose US house-
holds’ shift to greener products into an income and substitution effect. Sager (2019) also uses their
methodology, but focuses on CO2 emissions, and studies the link between income inequality and
aggregate emissions. Themain contribution of this paper is to utilize a panel data framework. Start-
ing from Levinson and O’Brien (2019)’s data building approach, I link the CEX data to the PSID to
study the relevance of household fixed effects when estimating EECs.

The methodological contribution lies in the construction of the panel dataset. My strategy is
inspired by the estimation of demand systems to connect the CEX and PSID, which has been em-
ployed to study the transmission of income shocks to consumption inequality (Blundell et al., 2008).
Instead of imputing consumption expenditures directly into the PSID, I can rely on its newly intro-
duced consumption series and impute the GHG intensity of consumption using non-parametric
imputation techniques (Cranmer and Gill, 2013). Hence, this paper joins ranks with several other
articles that complement existing data sources to account for the missing rich in survey datasets
(Nabernegg, Nabernegg and Kopp, 2023), expenditure under-reporting (Hardadi, Buchholz and
Pauliuk, 2021), or people living under poverty (Bruckner, Hubacek, Shan, Zhong and Feng, 2022).

Outline The paper is structured as follows. Section 2 discusses estimation of EECs inmore detail.
Section 3 describes the data, the imputation strategy, and the final sample. Section 4 presents para-
metric estimates of EECs and compares OLSwith FE estimation. Section 5 presents how the income
elasticity of GHG consumption varies by income and product category. Section 6 concludes.

2 Estimating Environmental Engel Curves

A common approach to estimate Environmental Engel Curves parametrically is to run the fol-
lowing regression on repeated cross-sectional data (Levinson and O’Brien, 2019; Sager, 2019):

Git = β1,tYit + β2,tY2
it + X′itδ + νit, (1)

where Git is the environmental measure of interest such as greenhouse house gases or air pollu-
tion, Y denotes income, and X is a vector of control variables. The model variables and coefficients
have subscript t, because the model is estimated separately for each period. The coefficients of
interest are β1,t and β2,t.

The interpretation of the EECs is a structural one: Holding prices constant, an increase in in-
come will give rise to a change in expenditure on G as estimated in Equation (1). Implicit in this
interpretation is that G in the EEC as represented above is an endogenous variable, whereas, in par-
ticular, Y is considered exogenous (Cameron and Trivdei, 2005, p.21). This implies that the linear
model does not suffer from omitted variable bias.
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A potential culprit in this respect, as also discussed by Sager (2019), is heterogeneity in house-
hold consumption preferences. These (unobserved) preferences, if correlated with income, would
constitute an omitted variable that would bias estimates in the linear model eq. (1), rendering the
structural interpretation moot. In fact, recent studies find evidence in this respect and stress or
model a codependence between income and preferences (Alan et al., 2018; Arellano et al., 2023).

The main contribution of this paper is to make progress in this direction and to include house-
hold specific effects in Equation (1). I am able to do so because of the panel structure of a novel
dataset that I construct (see below). Related to the discussion in the previous paragraph, the ra-
tionale of doing so is to control for potential time-invariant omitted variables which are correlated
with consumption and income. For instance, my approach can control for household consumption
preferences or any other unobservables, to the extent that these do not change over time.

3 Data

This section consists of four parts. First, I will describe the different data sources, which are en-
vironmental data from the Environmental Protection Agency (EPA) in the US, and household sur-
vey data from the Consumer Expenditure Survey (CEX) and the Panel Study of Income Dynamics
(PSID). I briefly lay out how to connect the CEX to the environmental data to construct household
consumption of GHG. Second, I will describe how I map the CEX dataset to the PSID. Third, I will
describe the main variables in my analysis and sample selection. Fourth, I show summary statistics
from my main sample.

3.1 Data sources and data preparation

Environmental data The collection of the environmental data followsLevinson andO’Brien (2019)
with two minor modifications.1 First, instead of using pollution data to the construct the Environ-
mental Engel curves, I use greenhouse gas data from EPA’s Greenhouse Gas Reporting Program
(GHGRP). Second, the benchmark year tomatch environmental and industry level production data
is updated to 2012, since this is the first year for which both are available in the same year.

GHGRP The GHGRP collects greenhouse gas emissions data at the facility-level from various
sources in the United States. Overall, about 8000 facilities are required to report their emissions
every year. This paper uses "direct emissions data" which is reported on-site and includes approxi-
mately 50% of total emissions in the United States. In other words, direct emitters describe facilities
that directly emit GHGs into the atmosphere, for instance, a power plant that burns natural gas or
coal. Greenhouse gases are reported in units of metric tons of CO2-equivalent.

Most importantly, the GHGRP allows to group facilities by six-digit North American Industrial
Classification System (NAICS) which then makes it possible to map it to the Economic Census

1 I thank Arik Levinson and James O’Brien for sharing their data and programs on concordances between datasets.
Some of which were carried together manually with their subjective judgments on UCC-IO mappings. The quality of
their documentation in the code is highly appreciated.
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and the Census of Agriculture. As a result, I can construct direct GHG coefficients in analogy to
the pollution coefficients by Levinson and O’Brien (2019). These coefficients measure the GHG
intensity of production in each sector - identified by NAICS code - and are computed, for each
sector, by dividing the total amount of GHGs emitted by the total value of production. Lastly, I
can map each of the coefficients to a particular IO codes which is important for the next step: The
mapping from production emissions to total emissions accumulated in final goods. Note that the
direct GHG coefficients measure the environmental impact in production irrespective of the place
in the supply chain; that is, for both intermediate and final goods. Using input-output tables from
the BEA, however, I can compute total GHG coefficients which measure for each final consumption
good - identified by IO codes - the amount of GHG emissions accruing over the whole supply chain
when producing that particular good. Hence, the data contains total GHG emission intensities by
IO code.

CEX To map GHG consumption to actual consumption expenditure, I use the Interview compo-
nent of the CEX. This component is a rotating panel, which follows consumer units (CU), or house-
holds, for a period of 15 month and registers information about expenditure in interviews every
three months. A strength of this dataset is the amount of detail with which information about
expenditure categories is collected. A downside is that even though household are followed for
multiple periods, income information is only elicited in the first and fourth interview (Heathcote,
Perri and Violante, 2010).

The consumption categories in the CEX are classified by so-called universal classification codes
(UCCs). To achieve a mapping between UCCs and IO codes, I rely on the manual concordance
by Levinson and O’Brien (2019). I merge the total GHG coefficients from the GHGRP to the con-
sumption data by IO code and can then compute the amount of GHG emissions needed to produce
a given consumption basket for every household. In other words, I can compute to what extent a
households’ consumption basket is relatively clean or dirty. This dataset, which includes consump-
tion expenditure and GHG emissions data on the household level is used for imputation below.

Language note Throughout the entire paper, I will refer to "a households’ consumption of GHG"
when speaking of the amount of GHG emitted when producing the households’ consumption bas-
ket. The former is, of course, not technically correct, but facilitates description and avoids unnec-
essarily complicated sentences.

PSID The PSID is a panel survey of a representative sample of U.S. households. The survey is
biennial since 1997 and collects a comprehensive set of consumption expenditure categories since
2005 (Li, Schoeni, Danziger and Kerwin Kofi, 2010). Moreover, it collects information about house-
hold members’ demographics, income, and wealth. It has low attrition and high response rates
(Andreski, Li, Samancioglu and Schoeni, 2014). I will use the 2005-2017 waves of the PSID. The
PSID is backward-looking, hence these waves represent the years 2004-2016.

In the following, I will explain how I connect the CEX with its information on GHG consump-
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tion to the PSID to create my final panel dataset in which I observe inter alia income, wealth, ex-
penditure, and the amount of greenhouse gases needed to produce a given amount of consumption
goods.

3.2 Mapping between CEX and PSID

Themapping between the CEX and the PSID proceeds in four steps. In the first step, I construct
GHG coefficients with Levinson and O’Brien (2019)’s strategy and use them to compute GHG con-
sumption on the UCC level. I then aggregate it to the nine categories observed in the PSID. In the
second step, I compute household GHG coefficients in the CEX for all nine PSID categories. In the
third step, I impute the GHG coefficients from the CEX to the PSID, separately for each consump-
tion category and year. I do this using multiple hot deck imputation as proposed in Cranmer and
Gill (2013). In the fourth step, I compute GHG consumption in the PSID by multiplying observed
consumption expenditures and the imputed GHG coefficient.

Step 1 The CEX data set has both expenditures for goods and services and the amount of GHG
necessary to produce them ((Levinson and O’Brien, 2019)). Therefore, to find the level of GHG as-
sociated with consumption of each UCC, I multiply the total GHG coefficient, whichmeasures tons
of CO2-equivalents per dollar spent, with the expenditure on UCC consumption goods. Formally,
denote the total GHG coefficient for UCC goods by ζUCC and expenditure on these goods by ZUCC

t .
Then for each household i in the CEX, GHG "consumption" by UCC is

GCEX,UCC
it = ζCEX,UCCZCEX,UCC

it . (2)

In the CEX, the UCCs are fairly disaggregated. For instance, in 2009 there are over 500 different
UCCs, while the PSID has 32 sub- and 9 main consumption categories. Going forward, I will focus
on the nine main categories. Hence, to compare consumption in the CEX and the PSID, I rely
on a mapping by Andreski et al. (2014) who match multiple UCCs to the PSID categories.2 It is
hence possible to aggregate UCCs from the CEX into consumption categories from the PSID. To be
more precise, denote by C the set of consumption categories in the PSID, with C = {Food, Housing,
Transportation, Education, Childcare, Healthcare, Clothing & Apparel, Trips & Vacations, and Recreation
& Entertainment}. For each c ∈ C, sum over all UCCs in the CEX that make up category c:

GCEX,c
it = ∑

UCC∈c
GCEX,UCC

it and similarly ZCEX,c
it = ∑

UCC∈c
ZCEX,UCC

it (3)

For instance, UCC 790410 ("Food prepared by consumer unit on out-of-town trips") and UCC
790240 ("Food and non alcoholic beverages"), among others, both contribute to the category "Food"
in the PSID.

2 I thank Patricia Andreski, Geng Li, Mehmet Zahid Samancioglu, and Robert Schoeni for providing this mapping.
See their Table 3 in the Online Appendix.
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Step 2 We can now back out the GHG coefficient for each PSID category:

ζCEX,c
it =

GCEX,c
it

ZCEX,c
it

. (4)

Equation (4) shows that the GHG coefficient ζCEX,c
it varies on the household level. Why is this

the case when ζCEX,UCC in Equation (2) did not? The reason is that ζCEX,c
it now captures differences

in households’ consumption baskets (in terms of UCC goods).

Step 3 Assume there is a function f : Rm → R which translates demographic characteristics, X,
into the CEX-based GHG coefficient:

ζCEX,c
it = f (XCEX

it ).

To impute the GHG coefficient into the PSID dataset, I approximate this function and apply it on
the same vector of demographic characteristics:

ζPSID,c
it = f̂ (XPSID

it ). (5)

How do we compute f̂ ? The strategy I use in this paper is called multiple hot deck imputation
(Cranmer and Gill, 2013). The idea is to compute a distance measure, called "affinity score", be-
tween XCEX

it and XPSID
it , which hold the same set of observables. For every observation in the PSID,

the procedure chooses the observation in the CEX with the highest affinity score and matches the
corresponding GHG coefficient.

It is possible that several observations in theCEX achieve this highest score fromwhich theGHG
coefficient should be matched. If this is the case, the CEX observation is chosen randomly. Given
the size of the CEX data, having multiple best affinity scores it the rule, rather than the exception.
Hence, I repeat the imputation procedure D times, essentially creating a series of functions, { f̂d}D

d=1.
Eventually, using D different f̂d’s on XPSID

it generates D (distinct) PSID datasets that exclusively
differ based on the imputed set of GHG coefficients {ζPSID,c

d,it }D
d=1.

Step 4 For each of these D datasets, I compute household GHG consumption of category c from
the imputed GHG coefficient and the observed level of expenditure:

GPSID,c
d,it = ζPSID,c

d,it ZPSID,c
it . (6)

3.2.1 Practical implementation

As controls in XCEX & XPSID I use the age of the household head, gender, the number of adults
in the households, the number of children in the household, marital status, race, region, and educa-
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tion.3 I recoded the numerical values in both the CEX and PSID to make all variables comparable.
Figure B.7 in Appendix B shows histograms for comparison. Overall, the distributions of all vari-
ables have similar shape and a high degree of overlap. An exception is the age variable, for the CEX
shows an increasing age gradient and the PSID a decreasing one. In total, I set D = 100 and run
the imputation separately for each wave in the PSID. Since the PSID is biennially I group adjacent
years in the CEX; for instance, I pool year 2004 and 2005 in the CEX to compare it to the 2005 wave
of the PSID.

3.2.2 Discussion of the imputation procedure

I want to address two points in more detail. First, a comparison of expenditure levels in the
CEX and the PSID. Second, the validity of the imputation procedure using my datasets.

Even though I impute the GHG consumption coefficients, I also want to verify that the consump-
tion measure is comparable in both dataset. Hence, Figure B.6 compares the expenditure levels of
all 9 PSID consumption categories, converted to 2012-$ and adjusted using the OECD equivalence
scale. The CEX UCCs have been aggregated accordingly (Andreski et al., 2014). The figure shows
that the expenditure levels, excluding outliers, have very similar distributions. This is especially
true for food, housing, and transportation, which are the embody the bulk of GHG consumption
(see Figure 1 below).

Turning to my second point, Equation (5) implicitly assumes that heterogeneity in ζPSID,c
it is

fully captured by my set observables, X. The idea is that variation present in the UCCs in the
CEX, which is lost in the aggregation Equation (3), is (partially) recovered by these demographic
characteristics. Since Cranmer and Gill (2013)’s procedure is non-parametric in nature, I do not
impose any functional form on f̂ to maintain enough flexibility when recovering this variation.

Finally, the hot deck imputation procedure is designed to impute discrete data. However, my
GHG coefficient is continuous. While the authors claim that the procedure works also well for
continuous data, I validated the performance on CEX data. In particular, I used data from the year
2004, computed total GHG consumption coefficients, and randomly set 20 percent of this variable
to missing. I then used XCEX to impute these missing coefficients, just as in my actual imputation,
however now I can compare them to the "true" coefficients. Regressing imputed coefficients on true
coefficients, without a constant, yields a coefficient of 0.95 and an R2 of 0.92 (see also Figure C.8).

3.3 Definitions and sample selection

The following definitions of income, wealth, and consumption are based on the original PSID
data. All variables are transformed into 2012-$.

Income I use post-tax household income in my regressions. I define household income as the
sum of head and spouse’s labor income, transfers, social security income, and food stamps net of
taxes (computed with NBER’s TAXSIM program).

3 Hence, note that the demographic characteristics only contain categorical variables, even though this must not nec-
essarily be the case, given our definition of f .
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Table 1: Summary statistics

Mean Std. dev.

Income (10000 2012-$) 6.51 5.72
Age 41.98 10.28
Gender 0.80 0.40
Marital status
Married 0.63 0.48
Never married 0.19 0.40
Widowed 0.01 0.11
Divorced 0.14 0.35
Separated 0.02 0.14
Race of household head
White 0.88 0.33
Black 0.10 0.30
Other 0.02 0.13
Asian 0.00 0.06

Observations 20751

Mean Std. dev.

Wealth (10000 2012-$) 16.98 32.79
Family size 2.84 1.46

Education
Elementary only 0.10 0.30
High school 0.28 0.45
Some college 0.27 0.44
College 0.21 0.41
More than college 0.14 0.35
Region
Northeast 0.16 0.37
Midwest 0.30 0.46
South 0.34 0.48
West 0.19 0.40

Note. This table shows summary statistics for the benchmark sample from the Panel Study of IncomeDynamics 2004-2016
as described in the main text. Income (net of taxes) and wealth is in units of 10000 and expressed in 2012 dollars.

Wealth A household’s wealth is defined as the difference between assets and liabilities. As-
sets include checking and saving accounts, stocks, private annuities/IRAs, present value of one’s
house/apartment, and vehicles. Liabilities include mortgages, credit card debt, student debt, med-
ical bills, legal debt, and loan from relatives.

Consumption Myconsumption variable corresponds to all consumption categories as described
above. That is, consumption is the sum of expenditure on food, housing, transportation, education,
childcare, healthcare, clothing & apparel, trips & vacations, and recreation & entertainment.

Sample selection I select household heads between 25 and 60 years old. I drop households
whose composition has changed throughout my observation period. Furthermore, I exclude ob-
servations whose i) total GHG consumption is negative ii) hourly wage is smaller than half the
minimumwage iii) labor income is positive, yet have zero working hours iv) wealth is less than mi-
nus one million. Lastly, I winsorize the top and bottom 0.5% of my income and wealth variable to
account for extreme outliers. Note that all sample selection criteria, except i), apply to the original
non-imputed PSID dataset.

3.4 Final dataset(s)

Recall that the final datasets differ only by one variable, namely the imputed GHG consump-
tion coefficient. Hence, Table 1, which shows summary statistics of key household characteristics,
represents all D datasets. The average household earns 65,100$ (in 2012 dollars), owns 169,800$ (in
2012 dollars) in wealth, and contains three persons. The average household head is 42 years old,
white, married, lives in the south of the US and has a high school degree.
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Figure 1: Greenhouse gas consumption by PSID category
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Note. This figure shows the share of greenhouse gas consumption across all nine consumption categories relative to the
overall greenhouse gas consumption in the PSID dataset. Greenhouse gas consumption is imputed from CEX data as
described in the main text.

Figure 1 shows our imputed GHG consumption measure as constructed in Equation (6). The
height of the bar indicates mean GHG consumption shares over all datasets. We see that expendi-
ture on housing, transport, and food almost make up all greenhouse gas emissions in consumption
baskets of households. Moreover, the small standard errors indicate that there is little variation
between datasets.

Finally, it is now possible to estimate the following linear model for every dataset d:

Gd,it = βd,1Yit + βd,2Y2
it + X̃′itδd + αd,i + γd,t + εd,it. (7)

The dependent variable is imputed GHG consumption summed over all categories, that is Gd,it =

∑c∈C Gc
d,it measured in tons of CO2-equivalents. As independent variables, I include income, Y, in-

come squared,Y2, and other covariates, X̃. These covariates include family size, family size squared,
age, age squared, gender of the household head as well as dummy variables for marital status, race,
education, and region. Furthermore, I extend existing specifications and includewealth andwealth
squared as control variables.

In the following, I will estimate Equation (7) using both pooled OLS and OLS based on de-
meaned variables; that is, within estimation/fixed effects. For brevity, I will refer to the former as
OLS and the latter as FE. Moreover, I will sometimes estimate the model for each dataset and then
present the distribution of point estimates from all regressions and not show standard errors. The
interpretation is akin to a bootstrap.
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4 Results

4.1 Quadratic EECs

Figure 2: Regression estimates for all D datasets
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Note. This figure shows OLS (blue) and FE (red) estimates of β̂d,1 and β̂d,2 from the linear model eq. (7). The model is
estimated for all imputed datasets such that there is an entire distribution of coefficient estimates in both cases.

The blue bars in Figure 2 show the estimates of both βd,1 and βd,2 for all datasets D when the
linear model is estimated using standard OLS. Furthermore, Figure 3 shows the shape of Environ-
mental Engel Curves for the years 2004 and 2016 (controlling for income (squared) only). From
these figures, we can make the following three observations. First, the coefficient on income is pos-
itive. Second, the coefficient on income squared is negative. Third, Environmental Engel Curves
shift down over time. Taken together, these three results confirm existing results in the literature
(Levinson and O’Brien, 2019; Sager, 2019), further validating the imputation approach.

The red bars in Figure 2, on the other hand, show the estimates of both βd,1 and βd,2 when the
linear model is estimated controlling for household fixed effects. The overall shape of the EEC stays
unchanged: it is upward sloping and concave. However, the distribution of point estimates of βd,1

suggests that the associated increase in GHG consumption due to an increase in income, ceteris
paribus, is not as strong as suggested by the OLS regression. Moreover, the EEC seems to be less
concave, as the β′d,2s are closer to zero, which would indicate a linear relationship. However, the
contrast between the OLS and FE estimates is less pronounced for the coefficient(s) on the quadratic
term, as the distributions overlap partly.

These results imply that (individual) EECs are i) flatter and ii) more linear as compared to the
cross-sectional estimates. This suggests that with respect to the slope there is an upward bias from
omitted time-invariant variables. Taking up preference heterogeneity again as a concrete example,
it means that household consumption preferences are positively correlated with both income and
GHG consumption.
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Figure 3: Environmental Engel Curves of GHG consumption
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Note. This figure shows Environmental Engel Curves from the first imputed PSID dataset for the years 2004 and 2016,
where households have been grouped into 50 income bins, respectively. EECs are represented by the predicted value of
GHG consumption from a linear regression of GHG consumption on income and income squared (quadratic fit). Income
is net of taxes, in units of 10000, and expressed in 2012 dollars. Greenhouse gas consumption is imputed from CEX data
as described in the main text.

4.2 Potential measurement error?

Including household-specific effects in the analysis comes at a potential cost. Griliches and
Hausman (1986) show that attenuation bias, due to measurement error in the independent vari-
able, is amplified in fixed effects estimation. Hence, the question arises whether attenuation bias is
dominant and pushes my coefficients towards zero (compared to the OLS case).

To study this possibility, I follow a strategy by Griliches and Hausman (1986): "Calculate some
differenced estimates (of different lengths) by OLS. If they differ significantly, errors in measure-
ment may well be present" (p.114). Since there are no control variables in their framework, I resid-
ualize my variables of interest. In particular, denote by MX̃,γ the residual maker w.r.t the controls
and time fixed effects, and denote residuals by lower case variables, that is, MX̃,γGit = git (analo-
gous for income) and MX̃,γεit = ε it. I then run several regressions on these residuals for different
orders of differences ∆xvarit ≡ varit − varit−x for my quadratic specification in all datasets:

∆xgd,it = βd,1∆xyit + βd,2∆xy2
it + ∆xεd,it. (8)

Table 2 shows the results of this strategy. The estimated coefficients and standard errors re-
ported here are averages over all datasets. For instance, β1 = 1

D ∑D
d=1 β̂d,1. Standard errors are

robust with respect to heteroskedasticity and clustered at the household level.
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Table 2: Griliches and Hausman (1986) test regression(s)

∆x β1 β2

1 0.532 (0.149) -0.0156 (0.0123)
2 0.393 (0.146) -0.0025 (0.0010)
3 0.523 (0.116) 0.0018 (0.0079)
4 0.821 (0.122) 0.0029 (0.0107)
5 0.819 (0.168) 0.0034 (0.0157)
6 0.622 (0.242) -0.0094 (0.0131)

OLS 0.989 (0.084) -0.0034 (0.0005)
FE 0.490 (0.130) -0.0028 (0.0010)

Note. This table shows the average estimates of eq. (8) over all datasets for different orders of the difference operator ∆ as
well as average OLS and FE estimates. Average standard errors in parentheses are robust and in the case of FE estimation
clustered at the household level.

The estimates give rise to two points why I am confident that my results are not driven by
(FE-amplified) attenuation bias. First, most of the estimated coefficients for different orders of the
difference operator ∆ are not significantly different from each other. With respect to β1, there is
some divergence for the fourth and fifth difference, however, the remaining ones agree in magni-
tude and in sign. With respect to β2, the coefficients do overlap, as standard errors are larger, but
are not significantly different from zero. Hence, based on the first-difference estimates, one could
not reject the linearity of EECs.

Second, Griliches and Hausman (1986) show that for a positively autocorrelated independent
variable with a declining correlogram, such as income in our case, the attenuation bias of the first
difference estimate when T > 2 should be larger than the FE estimate (see their equation (5)).
However, this is not the case for both of the coefficient estimates.

5 Income elasticity of GHG consumption

Another way of studying the shape of EECs and of considerable importance for the public fi-
nance literature is to look at income demand elasticities. Hence, Figure 4 plots the income elasticity
of GHG consumption based on eq. (7), when all other covariates are fixed at their mean value.4

Elasticities are evaluated over an equally-spaced ten-point income grid ranging from the minimum
income observation to 500,000 2012-$, the interval which covers the major part of the support of
the income distribution (Figure D.9). The blue solid line depicts the mean elasticities under OLS
for all datasets, whereas the red dashed line depicts the mean elasticities under FE estimation for
all datasets. The grey-shaded area covers the 10th and 90th elasticity percentile, respectively, over
all estimated elasticities.

4 Think of a partial equilibrium exercise in which prices are fixed such that income elasticity of demand and income
elasticity of consumption can be used interchangeably (Ghoddusi, Rodivilov and Roy, 2021)
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Figure 4
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Note. This figure shows estimates for the income elasticity of total GHG consumption based on eq. (7) when all covariates
are fixed at their mean value. Elasticities are evaluated over an equally-spaced ten-point income grid ranging from
the minimum income observation to 500,000 2012-$. The blue solid line shows the mean (over all imputed datasets)
elasticities when eq. (7) is estimated using OLS, and the red dashed line shows the mean (over all imputed datasets)
elasticities when the model is estimated using FE. The grey-shaded area covers the 10th and 90th elasticity percentile,
respectively, over all estimated elasticities.

Three observations stand out. First, both OLS and FE estimates are well below 1 for the entire
range of considered income levels. Hence, GHG can be considered a necessary good. Second,
however, the elasticity estimate under FE is approximately half that of the estimate under OLS,
while the shape of the elasticity curve is largely similar. Third, the FE estimate exhibits a larger
band of uncertainty. Obviously, the fact that OLS estimates are larger is an extension from the
larger coefficient estimates (Table 2).

These new elasticity estimates give rise to two policy implications. First, the equity-pollution
dilemmawould be attenuated. This dilemmadescribes that redistributing income from rich to poor
households might increase aggregate GHG emissions, as poorer households have larger marginal
propensities to consume (MPC) with respect to GHG consumption (Heerink et al., 2001; Sager,
2019). But note that the income elasticities of consumption can bewritten as the product of theMPC
and the consumption-to-income ratio. Keeping the latter fixed, the FE estimates imply a weaker
equity-pollution dilemma, as the difference in elasticities, and hence MPCs, between poor and rich
income households is not as large as previously estimated.

Second, and related to this argument, redistributing carbon tax revenue to poorer households
to alleviate its regressive impact would have weaker second-round effects on aggregate emissions.
This is an immediate implication of smaller elasticities at the lower end of the income distribution
(Figure 4).
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5.1 Income elasticities of different GHG consumption categories

The analysis so far has focused on a total measure of GHG consumption. But we saw in Figure 1
that only a subset of categories drive the total GHG measure. The next decomposition helps us
understand to what extent individual categories contribute to the overall income elasticity.

Decomposition 1.

ηG,Y = ∑
c∈C

φcηc,Y,

where φc ≡ Gc

∑c∈C Gc denotes the GHG consumption share and ηc,Y ≡ ∂Gc

∂Y
Y
Gc denotes the income

elasticity of GHG consumption of category c. Decomposition 1, which is derived in Appendix A,
states that the income elasticity of total GHG consumption is equal to the expenditure-weighted
elasticities of its components.

Figure 5
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Note. This figure shows estimates for the income elasticity of three consumption categories, namely housing, trans-
portation, and food GHG consumption, respectively. The estimates are based on an adjusted linear model eq. (7) where
the dependent GHG variable is replaced by the respective category. Elasticities are evaluated over an equally-spaced
ten-point income grid ranging from the minimum income observation to 500,000 2012-$. The blue solid line shows the
mean (over all imputed datasets) housing elasticities, the red dashed line shows the mean (over all imputed datasets)
transportation elasticities, and the green dotted line shows the mean (over all imputed datasets) food elasticities. The
grey-shaded area covers the 10th and 90th elasticity percentile, respectively, over all estimated elasticities.

Hence, in the following, I compute different income elasticities as above for the three primary
GHG categories, as they are the main contributors to the overall income elasticity. Figure 5 shows
the elasticities for housing, transportation, and food; again, over the equally-spaced income grid.
Both housing and transportation exhibit a hump-shaped income elasticity, whereas the income
elasticity of food is increasing over the entire domain. The income elasticity of housing is subject
to considerable uncertainty, whereas the ones for food and transportation have smaller uncertainty
bands.
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As indicated in the introduction, when Environmental Engel curves are non-linear, govern-
ments only have access to distortionary (piece-wise) linear income taxes and household prefer-
ences are separable in consumption and labor, carbon taxes do deviate from its Pigouvian level and
potentially serve other goals than correcting the climate externality from emissions (Jacobs and
van der Ploeg, 2019). In other words, governments should weigh equity and efficiency concerns
when setting (potentially different) carbon taxes on consumption categories. Hence, knowing in-
come elasticities of different consumption goods is provides insight for policy makers when carbon
taxes also serve redistributive purposes or should help alleviate existing distortions in the economy.
For instance, these elasticities are informative about the size of income effects that enter the social
marginal utility of income in optimal tax conditions (Diamond, 1975; Jacobs, 2018).

6 Conclusion

In this paper, I have constructed a novel panel dataset by imputing information on household
greenhouse gas consumption from the CEX to the PSID using multiple hot deck imputation. The
imputation procedure results inmultiple distinct datasets that can be used for econometric analysis.
Equipped with these datasets, I am able to parametrically estimate Environmental Engel Curves,
while controlling for time-invariant household specific effects, such as preference heterogeneity.

Taking into account these household effects (FE) results in flatter andmore linear Environmental
Engel Curves compared with pooled OLS. The mean (over all imputed datasets) income elasticity
of GHG consumption under FE is well below one and about half as large as the one implied by OLS
estimation. These elasticities differ by consumption category, as elasticities for GHG emissions in
housing and transportation expenditure exhibit a hump-shaped income elasticity, whereas elastic-
ities for GHG emissions in food expenditure is increasing for all levels of income. The estimates
have important implications for carbon taxation and redistribution of its revenue.

Lastly, this paper stayed close to existing estimationmodels to establish the relevance of control-
ling for household fixed effects. There are other avenues, however, which are well worth exploring
in future research. I want to mention two. First, the panel structure allows estimation of entire
systems of consumer expenditure functions with better estimation, identification and hypothesis
testing characteristics (Aasness, Biørn and Skjerpen, 1993). An application with respect to GHG
intensive goods would be particular interesting. Second, survey data often under-represents the
extreme rich and thus necessitates to exclude this part of the distribution from the econometric
analysis. Incorporating the panel framework while, in addition, taking into account the upper tail
of the distribution as in Nabernegg et al. (2023) would provide a more complete representation of
Environmental Engel Curves.
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Appendix

A Decomposition derivation

Start from the simple identity that total greenhouse gas emissions consumed are made up of
different categories, each of which is a function of income:

G = ∑
c∈C

Gc(Y).

Differentiating yields

dG = ∑
c∈C

∂Gc(Y)
∂Y

dY.

Division by dY, expanding terms, and employing the definitions of η and φ from the main text
yields the decomposition:

dG
dY

= ∑
c∈C

∂Gc(Y)
∂Y

dG
dY

Y
G︸ ︷︷ ︸

ηG,Y

= ∑
c∈C

∂Gc(Y)
∂Y

Y
Gc︸ ︷︷ ︸

ηGc ,Y

Gc

G︸︷︷︸
φc
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B CEX-PSID Comparison

Figure B.6: Expenditure comparison between CEX and PSID
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Note. This figure compares consumption expenditures between theCEXand the PSID. Expenditures in both datasets have
been aggregated to nine categories, adjusted using the OECD equivalence scale and are expressed in 2012-$. Outside
values are omitted from the boxplots.

Figure B.7: Covariates comparison between CEX and PSID
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Note. This figure compares the distribution of demographic characteristics between the CEX and the PSID. The depicted
variables are the ones that enter XCEX and XPSID, respectively, in the imputation exercise. Education categories are
Elementary (E), High School (HS), Some College (SC), College (C), and Postgraduate (PG). Marital status categories are
Married (M), Never Married (NM), Widowed (Wid), Divorced (Div.), and Separated (Sep.).
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C Hot Deck Matching Validation

Figure C.8: Hot Deck Matching Validation
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Note. This figure shows the relationship between the true GHG coefficients and the imputed GHG coefficients from CEX
test data in the year 2004. 20% of the GHG intensities observations in this year have been randomly set to missing and
then imputed based on the imputation procedure from the main text. The fitted line is based on a regression of imputed
GHG intensities on true GHG intensities, excluding a constant.
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D Additional Figures and Tables

Figure D.9: Distribution of income and wealth

(a) Truncated income distribution
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(b) Truncated wealth distribution
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(c) Full income distribution
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Note. This figure shows the distribution of after-tax income and wealth in the PSID, respectively, under the benchmark
sample. The top left panel shows the distribution of after-tax income when it is truncated at 500,000 2012-$. The top
right panel shows the distribution of wealth when it is truncated at 2,000,000 2012-$. The bottom panels show the full
distribution.
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