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Abstract

This paper investigates how credit shocks affect households’ consumption insurance through
the lens of a heterogeneous-agent incomplete-markets model. I simulate two different credit
shock specifications as observed in credit panel data: a permanent and a mean-reverting one.
I show that consumption insurance for idiosyncratic wage shocks drops on impact for both
kind of credit shocks, while they imply qualitative different consumption insurance paths in the
medium run. Importantly, I find that these dynamics differ by current wealth holdings. Asset-
poor households experience the largest decrease in consumption insurance, whereas asset-rich
households actually have access to more consumption insurance subsequent to a credit shock.
Finally, endogenous labor supply attenuates these dynamics.
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1 Introduction

When future earnings are uncertain, households can self-insure by borrowing and lending to smooth
consumption over time. For instance, in response to a negative uninsurable earnings shock, a house-
hold might borrow funds to keep consumption steady. Thus, the availability of credit to borrow is
an important determinant of households’ welfare and consumption smoothing patterns. However,
the recent great financial crisis (GFC) in the United States exhibited a sudden decline in the capacity
to borrow. Unsecured borrowing capacity determined by the aggregate credit card limit-to-GDP
ratio decreased by around 32% from 25% to 17% and is still - years later - at this lower level. Ag-
gregate credit card limits, on the other hand, decreased by about 30% during the GFC, but made
up almost three quarters of the drop by 2020 (see left panel in Figure 1). Moreover, the use of un-
secured credit - determined by the credit card debt in terms of its absolute values and relative to
GDP - shows similar dynamics (see right panel in Figure 1).

This paper takes the stylized facts fromFigure 1 and answers the following question through the
lens of a heterogeneous-agent incomplete-markets model: How do permanent andmean-reverting
credit shocks affect households’ consumption smoothing patterns? In particular, I am interested in
the (short-run) effects of different credit limit dynamics on the amount of consumption insurance
with respect to both persistent and transitory idiosyncratic labor productivity shocks. The model
suggests that both type of credit shocks reduce the economy-wide level of consumption insurance
for both type of idiosyncratic shocks in the short run, while displaying qualitative different paths
in the medium run. Importantly, the aggregate consumption insurance response masks consid-
erable heterogeneity along the wealth distribution, as poorer households’ self-insurance worsens
and richer households’ self-insurance improves subsequent to a credit shock. At last, I show that
endogenous labor supply attenuates these dynamics.

Figure 1: Credit card limits and balances in the GFC
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Note. The left panel of this figure shows the aggregate credit card limit and the credit limit-to-GDP ratio in the United
States. The right panel shows the aggregate credit card debt and the credit card debt-to-GDP ratio in the United States.
Credit card data is obtained from the credit card panel of the New York Fed.
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In particular, the heterogeneous-agent incomplete-markets environment I consider is similar to
Huggett (1993) and Guerrieri and Lorenzoni (2017). Risk-averse households produce consumption
goods using labor, are heterogeneous in terms of their labor productivity and seek insurance against
both persistent and transitory idiosyncratic shocks to this productivity level. They can only trade
one period risk-free bonds up to an exogenous (ad-hoc) borrowing limit and pay lump-sum taxes
to a government that supplies a fixed amount of risk-free bonds. The credit shock is then modelled
by gradually reducing the borrowing limit. Due to the absence of closed-form solutions in this par-
ticular class of models, solutions are obtained using numerical simulations with empirical-based
parameterization.

The decisive element in my quantitative exercise is that I distinguish between a permanent and
a mean-reverting credit shock that resemble the empirical evidence as in Figure 1. First, the per-
manent credit shock is modelled to match the drop in credit limit-to-GDP ratio. Second, the mean-
reverting credit shock is modelled to match the drop and mean-reversion of aggregate credit card
debt as observed in the data. Having calibrated the transitional dynamics, I then compute con-
sumption insurance coefficients - in the spirit of Kaplan and Violante (2010) - for both persistent
and transitory idiosyncratic shocks along the transition path. These coefficients measure to what
extent (log) consumption can be isolated from the idiosyncratic shocks.

My main findings can be summarized as follows. First, I find that consumption insurance
against persistent idiosyncratic shocks decreases by 1.5% for both credit shocks on impact. Con-
sumption insurance against transitory idiosyncratic shocks decreases 0.75% on impact for the per-
manent credit shock and 1.5% for the mean-reverting credit shock. These dynamics can be ex-
plained by the deleveraging behavior of agents subsequent the credit shocks: households have to
decrease debt tomove away from the tighter credit limit. Thereby, they accumulate assets and forgo
consumption (see also Guerrieri and Lorenzoni (2017)).

Second, the main difference between the two credit shock specifications manifests itself in the
medium run, once the the credit limit stays at its lower level - in the permanent case - or starts to
mean-revert to its initial level - in the mean-reverting case. On the one hand, the coefficients in
the permanent credit shock specification converge to the terminal value from below, indicating a
smoothing out of the deleveraging phase. On the other hand, the coefficients in the mean-reverting
specification overshoot their pre-shock value and then converge back to their initial value, as the
deleverage phase reverses and agents start to decumulate assetswhen the credit limit loosens again.

Third, the self-insurance capacity of households depends critically on the position in the wealth
distribution. The decrease in the insurance coefficient is larger - both in absolute and relative terms
- for agents in the bottom 10% of the wealth distribution compared to households in the bottom
25%. The former are closer to the credit limit and hence, the deleveraging impact is stronger. On the
other hand, consumption insurance coefficients for households in the top 10%and 25%, for instance,
actually increase. Given the fixed supply of bonds in the economy, these households decumulate
bond holdings which generates additional resources as a buffer.

Finally, another margin that households can use in the model to isolate consumption against id-
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iosyncratic shocks is to change their labor supply. To analyze the impact of this margin, I repeat my
quantitative exercise under exogenous labor supply of households. I find that the qualitative dy-
namics are unchanged, however, the decrease in consumption insurance is stronger. For instance,
the consumption insurance against persistent idiosyncratic shocks decreases by about 5% for both
credit shocks. This implies that the possibility to adjust their labor supply is an important mecha-
nism for households to insure their consumption in response to credit shocks.

Related literature Mypaper relates to several works in the literature regarding credit shocks1 and
consumption insurance. I bring these two areas together by explicitly modelling different credit
limit dynamics.

The theoretical and numerical part of my paper is most closely related to the work of Guerri-
eri and Lorenzoni (2017) and Kaplan and Violante (2010). Guerrieri and Lorenzoni (2017) study
the effects of a credit crunch on aggregate spending and output. For their analysis, they use a
heterogeneous-agent incomplete-marketsmodel inwhich agents are subject to idiosyncratic shocks
going back to Bewley (1977), Huggett (1993), and Aiyagari (1994). They document that the credit
crunch induces a deleveraging processwhich depresses interest rates and generates an output drop;
moreover, the precautionary savingsmotive amplifies thismechanism. I adapt their baselinemodel
but focus on the effects on consumption insurance in the economy. Thereby, my main contribution
is the explicit distinction between different credit limit dynamics; that is, between a transitory and
a permanent credit shock.2

In a quantitative studyKaplan andViolante (2010) assess howmuch insurance agents can obtain
with self-insurance in a standard incomplete markets (SIM) life-cycle model and compare it with
empirical estimates by Blundell, Pistaferri and Preston (2008).3 They conclude that consumption
insurance implied by canonical consumption-savings models is too little compared to the data; a
conclusion that is shared by other papers in the literature (Krueger and Perri, 2006; Broer, 2013).4

I follow their approach and simulate an artificial panel in the model to construct consumption
insurance coefficients as in Blundell et al. (2008).

The rest of the paper proceeds as follows. Section 2 outlines the model and defines the equi-
librium in transition. Section 3 presents data, calibration targets and parameterizations as well as
a brief comparison of the initial and terminal steady state. Section 4 contains the main analysis of
the transitional dynamics under different regimes and specifications. Section 5 concludes.

1 Other exemplary papers than the ones mentioned in the main text studying credit shocks are Cúrdia andWoodford
(2010),Eggertsson and Krugman (2012), and Jones, Midrigan and Philippon (2022)

2 López-Salido, Stein and Zakrajšek (2017) and Nakajima and Rıos-Rull (2019) also document and model mean rever-
sion in credit conditions.

3 Other studies have since modelled additional channels of insurance to overcome the gap between model and data,
such as, advance information (Stoltenberg and Singh, 2020), family labor supply (Blundell, Pistaferri and Saporta-Eksten,
2016), moving back to ones parents (Kaplan, 2012), or social insurance programs (Hubbard, Skinner and Zeldes, 1995),
among others.

4 Wu and Krueger (2021), on the other hand, find that a Bewley model with two-earner households and endogenous
labor supply successfully recovers the degree of consumption insurance as estimated in the empirical counterpart by
Blundell et al. (2016).

4



2 Model

This section describes the benchmark economy in which risk-averse households face uninsur-
able idiosyncratic productivity shocks as in Guerrieri and Lorenzoni (2017). The key is that house-
holds can only partially self-insure against these idiosyncratic shocks usings a single one-period
asset, for which borrowing is constrained by an ad-hoc limit, and adjusting hours worked. The
next section then brings the model to the data and outlines how to determine the path of the bor-
rowing limit during the transition.

Households Time is discrete. The economy is populated by a continuumof infinitely-lived house-
holds indexed i of measure unity. Households receive a utility flow U from consuming cit > 0 and
leisure, lit. The time endowment of households, which can be allocated between leisure and labor,
nit, is normalized to 1. I assume that the utility function U(cit, nit) is separable and isoelastic in con-
sumption and labor; U : R+ ×R[0,1] → R is strictly increasing in consumption, strictly decreasing
in labor, strictly concave and satisfies the Inada conditions. The future is discounted at rate β:

E

[
∞

∑
t=0

βtU(cit, nit)

]
, (1)

where the expectation is taken over realizations of idiosyncratic labor productivity shocks. For
now, there is no aggregate risk.

Each household i produces the consumption good with the linear technology

yit = θitnit (2)

by choosing labor supply nit.5 θit is an idiosyncratic shock to the labor productivity which follows
a first-order Markov chain over a finite state space, {θ1, . . . , θM}.

The only asset traded in this economy is a one-period risk-free bond, b. Hence, household utility
maximization is restricted by the following budget constraint:

1
1 + rt

bit+1 + cit ≤ bit + yit − τt,

where bit denote bond holdings, rt is the interest rate, and τt is the tax burden at time t.
Borrowing is allowed up to an exogenous limit, possibly depending on the productivity state

of the household.

bit+1 ≥ −φ, (3)

with φ > 0. I will study the effects of an unexpected one-time shock that reduces this limit.
5 Hence, productivity shocks equal wage shocks and I will use the two terms interchangeably.
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Recursive formulation of the household problem The following formulation as well as the def-
inition of equilibrium below refer to the problem during transition since this constitutes the main
exercise of the present paper. The equivalent descriptions in a stationary environment are relegated
to Appendix D.

A household is characterized by the by the pair (bit = b, θit = θ) — the individual state. Given
a sequence of interest rates {rt}∞

t=0, a sequence of government policies {τt}∞
t=0, and a sequence of

borrowing limits {φt}∞
t=0, each household chooses ct(b, θ), bt+1(b, θ), and nt(b, θ) to solve

Vt(b, θ) = max

[
U
(
ct(b, θ), nt(b, θ)

)
+ β ∑

θt+1∈Θ
Vt+1

(
bt+1(b, θ), θt+1

)
Γθ,θt+1

]
subject to

1
1 + rt

bt+1(b, θ) + ct(b, θ) ≤ b + yt − τt

bt+1 ≥ −φt+1, nt(b, θ) ≥ 0

yt = θnt(b, θ).

(4)

The policy functions ct(b, θ) and nt(b, θ) are sufficient to determine the transition of bond holdings,
as future bond holdings, bt+1(b, θ), can be derived from the budget constraint.

Denote by Φt the distribution of agents over states at time t. This distribution is the aggregate
state variable. Note that during the transition period, the value function and policies are also a
function of time, since the interest rate, the tax schedule and the borrowing limit are time varying:
(rt, τt, φt). Furthermore, the dynamics induced by the credit shock are deterministic, that is, the
entire transition path of the borrowing limit is known. As a result, given an initial distribution Φ0,
it is known how (rt, τt), and Φt evolve over time. Therefore, in Equation (4) it is not necessary to
make prices and policy functions dependent on the distribution; the time subscript is sufficient.

Government The government budget constraint is

Bt =
1

1 + rt
Bt+1 + τt,

where Bt denotes the aggregate supply of government bonds. It is assumed, that the government
chooses the tax schedule, τt, to keep a balanced budget, while keeping bond supply constant at B.

2.1 Equilibrium

Before defining the equilibrium, it is necessary to define an appropriate measurable space on
which the distribution of agents Φt is defined. Let A ≡ [b, b] be the set of possible values for bit

with some lower bound b and some upper bound b; it holds that b < −φt ∀t. Define the state space
S ≡ A×Θ and let the σ-algebra Σs be defined as BA ⊗ P(Θ), where BA is the Borel σ-algebra on A
and P(Θ) is the power set of Θ. Finally, let S = (A×Θ) denote a typical subset of Σs.

The equilibrium in transition is summarized in the following definition.
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Definition 1. Given an initial distribution Φ0, and a sequence of borrowing limits {φt}∞
t=0, a recur-

sive competitive equilibrium is a sequence of value functions {Vt}∞
t=0, policy functions for house-

holds {ct(b, θ), nt(b, θ)}∞
t=0, future bond holdings {bt+1(b, θ)}∞

t=0, interest rates {rt}∞
t=0, government

policies {τt}∞
t=0, and distributions {Φt}∞

t=0, such that, for all t:

i) Given rt and τ̃t, the policy functions ct(b, θ) and nt(b, θ) solve the household’s problem (4) and
Vt(b, θ) is the associated value function

ii) The government budget constraint is satisfied

τt =
rtB

1 + rt

iii) The asset market clears ∫
(A×Θ)

bt+1(b, θ)dΦt = B

iv) For all S ∈ Σs, the joint distribution measure Φt+1 satisfies

Φt+1(S) =
∫
(A×Θ)

Qt((b, θ),S)dΦt,

where Qt is the transition function defined as

Qt((b, θ),S) = 1{bt+1(b,θ)∈A} ∑
θt+1∈Θ

Γθ,θt+1 .

The goods-market clearing condition is redundant by Walras law and thus omitted.

The optimization problem of the household gives rise to two optimality conditions that are used
to construct the sequences of policy functions ct(b, θ) and nt(b, θ) where I skip the formulation of
individual state variables for readability. First, an Euler equation governing optimal intertemporal
substitution between consumption today and tomorrow

β(1 + rt)E [Uc(ct+1, nt+1)] ≤ Uc(ct, nt); (5)

Equation (5) holds with equality if Equation (3) is not binding.
Second, an optimality condition for intratemporal substitution between labor and consumption

Un(ct, nt) ≤ −θUc(ct, nt); (6)

Equation (6) holds with equality if nt > 0.
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3 Quantitative exercise

3.1 Data and calibration

In the following Iwill first describe themain datasets used in calibration. Thereafter, I will speak
about steady-state calibration, briefly introduce the consumption insurance measure, and finally,
how to calibrate the transitional dynamics of the borrowing limit. Eventually, the calibrated model
can inform us about the size and shape of consumption insurance in the economy, as the borrowing
limit changes.

3.1.1 Data

Productivity data I compute a productivity measure using data from the Panel Study of Income
Dynamics (PSID). The PSID is a longitudinal survey of a representative sample of U.S. individuals
and othermembers of their households. The survey is biennial since 1997 and features low attrition
as well as high response rates (Andreski, Li, Samancioglu and Schoeni, 2014). I follow Flodén and
Lindé (2001) and define productivity as an "agent’s hourly wage rate relative to all other agents"
(p.416). In my case, agent refers to either "head", wife/"wife", or both as indicated in the PSID.
An agent’s hourly wage is defined as total yearly labor income divided by annual hours worked.
Moreover, to be in line with the model I use post-tax wage rates as there are no distortionary taxes
present that would affect the labor supply decision of agents. I combine post-tax wage rates within
a household to compute productivity levels per household. Amore detailed description of the data
and the variables can be found in Appendix A.

Credit data I employ twodifferent credit data sources. Firstly, the credit limit data is from the 2020
Q2 Household Debt and Credit Report (HDCR) via the FRBNY Consumer Credit Panel (CCP).6

The CCP is a longitudinal database which comprises information on consumer debt and credit via
Equifax credit reports. The sampling procedure makes use of the randomness in the last 4 digits
of the social security numbers to create a nationally representative random sample of individuals
who have a credit report. The information from credit reports on individual accounts is then further
limited to accounts that have been updated within the last three months.

In particular, the credit limit in the HDCR refers to the limit on bankcard accounts (or credit
card accounts) which are revolving accounts for banks, bankcard companies, national credit card
companies, credit unions and savings & loan associations (Lee and van der Klaauw, 2010). Credit
limits via home equity revolving accounts are considered separately and are not captured here.

The second data source is the consumer credit time series from the Federal Reserve Board Flow
of Funds (FoF). Particularly, I am interested in the evolution of credit card debt as a fraction of GDP.
Note that this is the same dataset which is used to calibrate the net supply of bonds, B; that is, the

6 The microdata can only be accessed by researchers of the Federal Reserve System, hence, I rely on aggregate data
which is published with recent reports; in my case this report is the HCDR. See questions on Data Requests here
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datapoints in 2006 are used as a benchmark to calibrate the initial steady state, whereas I make use
of the whole time series of consumer credit to calibrate my transitional dynamics.

Lastly, note that even though I use two different data sets in my calibration exercise below, con-
sumer credit is one of the components in the FoF which can be directly compared to debt measures
in the HDCR (CCP). The report states that the numbers obtained in the third quarter of 2009 for
consumer credit from both datasets are very similar in magnitude. ($2.6 trillion in the CCP vs $2.5
trillion in the FoF; see HCDR).7

3.1.2 Steady-state calibration

The calibration strategy for the initial steady state aims to capture economic conditions, espe-
cially at the household level, prior to the GFC in 2006 and before. Table 1 summarizes the calibra-
tion.

Model functional forms and parameters
Preferences I assume preferences are additively separable and isoelastic in consumption and

labor:

U(cit, nit) =
c1−γ

it
1− γ

+ ψ
(1− nit)

1−η

1− η
,

where I already normalized time endowment for leisure and labor to 1, l + n = 1. The time period
is a quarter.

The discount factor β is set to match an annual interest rate of 2.5% in the initial steady state.
The elasticity of intertemporal substitution (EIS), 1

γ , is set to a quarter. The parameters governing
the curvature of utility from leisure and the utility weight of leisure, η and ψ, are set to match an
average Frisch elasticity of 1 and average hours worked for employed agents of 0.4, respectively.8

The latter is supported by evidence from Nekarda and Ramey (2010)9.
Labor productivity process An agent’s stochastic labor productivity depends on two components

and is given by

log θit = κit + εit (7)

κit = ρqκit−1 + ζit (8)

The first component, κ, is an AR(1) process with persistence ρq and innovation variance σ2
q,ζ . The

second component, ε, is a transitory i.i.d. shock variance σ2
q,ε. Both innovations are assumed to be

7 A small part of the remaining difference, for instance, can be explained by debt holdings from individuals without
a social security number; these individuals are captured only in the FoF.

8 A Frisch elasticity is motivated by the effect that the unit of observation is the household. Hence, the labor supply
decision implicitly takes into account higher labor supply elasticities of females as well as labor supply decisions on the
extensive margin. See also Conesa, Kitao and Krueger (2009) for an alike motivation.

9 This reference refers to an older version of their working paper, meanwhile titled "The Cyclical Behavior of the Price-
Cost Markup". For the evidence considered here, see Figure 10 in the 2010 version
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normal with zero mean. Theoretical variance and covariance moments of the stochastic wage pro-
cess in Equation (7) are matched to empirical moments constructed using data from the 2002-2006
PSID waves. A detailed description of the estimation procedure with annual data and subsequent
conversion to the quarterly frequency can be found in Appendix A. The continuous wage process
is then transformed onto a discretized grid using Rouwenhorst (1995)’s method. The mean of θ

under the stationary distribution is normalized to 1.
Asset supply Parameters regarding the asset supply are jointly matched to reconstruct pre-

crisis characteristics of households’ balance sheets. Using data from the 2006 Federal Reserve Flow
of Funds, I target a liquid asset to GDP ratio of 1.78. Particularly, liquid asset include Deposits,
Treasury Securities, Agency- and GSE- backed securities, Municipal Securities, Corporate Foreign
Bonds, Mutual Fund Shares, and Security Credit10. The net supply of Bonds, B, is defined to be
equal to liquid assets ratio minus credit card debt holdings of households, all expressed in terms
of annual output. Thus, given a credit card debt-to-GDP ratio, B is then adjusted to match the liq-
uid asset to GDP ratio. The borrowing capacities in the model, hence, mirror unsecured revolving
credit. In addition, φ is used to match the credit card debt-to-GDP ratio prior to the GFC.

Table 1: Calibrated parameters in the steady state

Parameter Value Target/Source

Discount factor β 0.980 Annual interest
rate of 2.5%

Curvature of utility from leisure η 1.50 Avg. frisch
elasitcity = 1

Coefficient on leisure in utility ψ 22.36 Avg. hours of
endowment
worked = 0.4

Elast. of intertemp. substitution 1/γ 0.25 Guerrieri and
Lorenzoni (2017)

Persistence productivity process ρq 0.976 PSID

Var. of innovation to persistent shock σ2
q,ζ 0.012 PSID

Var. of transitory productivity shocks σ2
q,ε 0.049 PSID

Net bond supply (to annual GDP) B/YA 1.6 Flow of Funds
liquid assets

Borrowing limit (to annual GDP) φ/YA 0.372 Credit card
debt-to-GDP

Note. This table summarizes the calibrated and baseline parameters of the benchmark model. Variables and parameters
in bold indicate that these have been calibrated to match simulated moments. See main text for details.

10 Data is taken from Table B.100 which can be found here
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3.2 Consumption insurance measure

To evaluate the extent of risk-sharing and consumption insurance I compute insurance coeffi-
cients as introduced by Blundell et al. (2008) and further examined by Kaplan and Violante (2010).
To set the scene, let us quickly revise the notion of insurance in this framework. The insurance
coefficient for a shock xit to logged income or productivity is defined as

ϕx = 1− cov(∆cit, xit)

var(xit)
,

where ∆cit denotes the first difference in logged consumption, and the second moments are taken
over the entire cross-section of households. The intuition is best captured by Kaplan and Violante
(2010): the insurance coefficient is "the share of the variance of the x shock that does not translate
into consumption growth" (p.57).

To compute this measure from the model perspective is straightforward, for the shock realiza-
tions are observed when simulating an artificial panel. The insurance coefficients from the model
then read

ϕζ ≡ 1− cov(∆cit, ζit)

var(ζit)
and ϕε ≡ 1− cov(∆cit, εit)

var(εit)
. (9)

ϕζ is computed from simulated data using the quasi-difference operator ∆̃, with ∆̃κt ≡ κt − ρqκt−1.
Table 2 shows the consumption insurance coefficients from the model in both the initial and

terminal steady state as well as under endogenous and exogenous labor supply of agents. The
terminal steady state corresponds to an economywith a tighter credit limit, as is explained in more
detail below. We see that the terminal steady state features lower insurance coefficients in all four
cases. The changes, albeit small in relative magnitude, are bigger for i) the persistence productivity
shock and ii) under exogenous labor supply. Moreover, comparing exogenous and endogenous
labor supply in both steady states reveals that the labor supply decision has a stronger effect on
insuring persistent productivity shocks. These observations connect to the existing literature to the
effect that first, persistent shocks are harder to insure (Blundell et al., 2008; Kaplan and Violante,
2010) and second, labor supply is used as an consumption smoothing device (Low, 2005; Pijoan-
Mas, 2006; Wu and Krueger, 2021).

Table 2: Consumption insurance coefficients in the steady states of the model

Endogenous labor supply Exogenous labor supply

ϕζ ϕε ϕζ ϕε

Initial steady state 0.6987 0.9620 0.4423 0.9554
Terminal steady state 0.6962 0.9609 0.4381 0.9531

Note. This table shows the steady state consumption insurance coefficients for the persistent productivity shock, ϕζ , and
the transitory productivity shock, ϕε, as defined in Equation (9). The left two columns depict the benchmark case where
agents choose their labor supply endogenously. In the right two columns, the labor supply is exogenous and set to 1.
The terminal steady state refers to the economy with a reduced credit limit.
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3.3 Credit shocks

The main quantitative exercise of this paper moves beyond steady state outcomes and studies
the short-term/transitional effects of limited credit availability on consumption smoothing behav-
ior of households. The dynamics of the credit limit should reflect the two different kind of credit
dynamics in Figure 1. Hence, I employ two calibrations of credit shocks that reflect these dynamics:
i) a Mean-reverting credit shock and ii) a permanent credit shock.

In both calibrations, the shock to the credit limit is not expected by the agents and hits the
economy in the initial steady state ("MIT shock"). To abstract from households defaulting on their
one-period bonds, I follow Guerrieri and Lorenzoni (2017) and assume that the credit shock lasts
for six periods and follows a linear path.11 In this way, households are able to incrementally adjust
their portfolios without paying back unrealistically large amounts of debt within a single period.
The complete path of the credit limit towards the terminal steady state is deterministic and fully
known to households.

In the following, I will explain how I construct the path of this credit limit in both calibrations
in the model and which data targets I match. Table 3 summarizes the calibrated parameters and
targeted moments during transition.

i) Mean-reverting credit shock The mean-reverting credit shock captures the transitory notion
of the aggregate credit card statistics as observed in Figure 1. Both aggregate credit card debt and
credit card limits drop during the GFC and then revert. Hence, in this calibration, I match the initial
drop in the credit card debt-to-GDP ratio as well as the mean-reversion back to its pre-GFC level.
The top panel of Table 3 shows the corresponding parameter values and targets for this calibration.

In particular, the shock in the first 6 periods follows the linear specification

φt+1 = φ̄− (1− χ)φ̄

6
· t for t ≤ 6,

where χ governs the size of the shock. Subsequent the shock I specify the evolution of the credit
limit as

φt+1 = $φ̄ + (1− $)φt for t > 6,

where $ governs the speed of mean-reversion of the borrowing limit and φ̄ denotes the long-run
average, that is, the value from Table 1 in the initial steady state. The parameters $ and χ are then
jointly determined in order to match the two empirical targets.

The first empirical target concerns the drop in the credit card debt-to-GDP ratio. I target a
credit-card debt-to-GDP ratio of 3.8%, the lowest point of this time series after 2006, the year that
represented my initial steady state.

11 Note, however, that default or delayed payment can be a channel of insurance by itself. Gelman, Kariv, Shapiro,
Silverman and Tadelis (2020) provide evidence that during the 2013 US government shutdown, many affected employees
delayed recurring payments, for instance, for credit cards to smooth consumption. In a quantitative paper, Hannon (2022)
shows how the option to enter mortgage delinquency can cushion the consumption drop after a housing crisis.
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The second empirical target concerns the speed of the mean-reversion of aggregate credit card
balances. Since I look at transitional dynamics starting from a steady state, I extract the stationary
component in the time series and then target the autocorrelation in this component. In particular,
I decompose the (inflation-adjusted) credit card balances into a trend and cyclical component us-
ing the Hodrick-Prescott filter. Thereafter, I estimate the autocorrelation of the cyclical component
using a simple AR(1). The path of the credit limit in the model after the shock will be specified in
such a way, that the autocorrelation of the model implied aggregate debt balance along the transi-
tion will match precisely this AR(1) estimate from the data. Appendix B describes the filter in more
detail and provides the AR(1) estimates.

ii) Permanent credit shock The permanent credit shock, on the other hand, captures the down-
ward shift in credit card variables once they are scaled with GDP as observed in Figure 1. This
exercise is similar to the one conducted in the benchmark case of Guerrieri and Lorenzoni (2017),
as the shock boils down to a permanent drop in the credit limit.12 The difference, however, is the
fact that I can observe this limit from the data.

In this calibration, I match the percentage change in the credit limit-to-GDP ratio. I choose a
borrowing limit in the terminal steady state, φterminal , which implies a drop of 30 percent, from
25% to 17.5%, as observed in Figure 1. The path of the credit limit is then as follows: In the first six
periods, the borrowing limit decreases linearly to φterminal and stays there permanently. The bottom
panel of Table 3 summarizes the corresponding parameter value and target for this calibration.
Moreover, the red line in the left panel of Figure 2 shows the path of the borrowing limit (scaled by
GDP).

Credit card debt and limit dynamics Overall, the mean-reversion parameter is similar in size to
thematched autocorrelation of the credit debt-to-GDP ratio. The intuition for this results resembles
the precautionary behavior subsequent credit shocks as documented, for instance, by Guerrieri and
Lorenzoni (2017). When the shock hits the economy in the initial steady state, agents accumulate
wealth to stay away from the borrowing limit. As the path for the credit limit is fully known to them,
they can align deleveraging and leveraging phases with the dynamics of the limit. This perfect
foresight behavior can also be seen from Figure 2 which shows the dynamics of the credit limit-to-
GDP and the credit card debt-to-GDP ratios, respectively, under the different shock specifications.
Even though the size of the transitory shock is larger than the permanent shock, in the former case
the credit debt-to-GDP ratio is smaller after 6 periods as agents realize that the credit limit will be
loosened from then on. In the latter case, however, agents keep deleveraging to stay away from the
credit limit (Guerrieri and Lorenzoni, 2017).

12 Guerrieri and Lorenzoni (2017) also simulate a transitory credit shock in an economy with durable goods and a
credit spread. This shock is modelled as a transitory increase in the credit spread, which affects agents over the whole
wealth distribution and not mainly the ones near the credit limit.
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Table 3: Calibrated parameters and moments to match moments along the transition

i) Mean-reverting credit shock

Parameter Value Target

Credit-shock size 1− χ 0.372 Credit card debt-to-GDP low of 3.8%
Mean-reversion 1− $ 0.826 Autocorrelation in credit card debt of 0.841

ii) Permanent credit shock

Parameter Value Target

Borrowing limit
(to annual GDP) φterminal/YA 0.841 30% drop in the credit limit-to-GDP ratio

Note. This table summarizes the calibrated parameters to match the transition of the credit shocks in the model to em-
pirical moments. See main text for details.

Figure 2: Permanent and mean-reverting credit shocks

0 10 20 30
Transition period

0.200

0.225

0.250

0.275

0.300

0.325

0.350

0.375

φ
Yss

A

Credit limit-to-GDP

0 10 20 30
Transition period

0.035

0.040

0.045

0.050

0.055

0.060

D
Yss

A

Credit debt-to-GDP

Mean-reverting shock Permanent shock

Note. The left panel of this figure shows the path of the credit limit under the transitory and permanent credit shock,
respectively. The right panel shows the model implied credit debt-to-GDP ratio under both shock scenarios. Both panels
show the first 35 periods of the transition.
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4 Quantitative results

With a calibrated model in hand it is now possible to answer the main question of the paper:
How do permanent and transitory credit shocks affect households’ consumption smoothing pat-
terns? To do so, I implement the transition as outlined above and simulate an artificial panel of
households starting from the steady state over the entire transition. With their observed consump-
tion choices and simulated shocks I compute the consumption insurance coefficients as in Equa-
tion (9).13

4.1 Transitional dynamics

Figure 3 shows the transition dynamics of the insurance coefficients for both type of credit
shocks and productivity shocks, respectively. The left panel shows the dynamics after the perma-
nent credit shock. We see that the consumption insurance coefficient drops moderately on impact
for both productivity shocks. Consumption insurance for the persistent shock falls by 1.5% and
0.75% for the transitory shock. Moreover, the persistent coefficient immediately increases again
after the initial shock, whereas the transitory coefficient drops further to a 1% reduction in period
six, when the credit limit reached its trough, and only increases thereafter.

The right panel shows the dynamics after the mean-reverting credit shock. The dynamics in the
first six periods are similar to the permanent shock. The persistent coefficient also drops to about
1.5% on impact and increases immediately thereafter. The transitory coefficient drops to 1.5% and
also decreases further within the next 5 periods until 1.8%. Note, however, that one should keep in
mind that the drop in the credit limit is larger for the mean-reverting shock (Figure 2).

The main difference between the two credit shock specifications manifests itself in the medium
run; that is, period 7 to 25. While the coefficients in the permanent credit shock specification con-
verge to the terminal steady state from below, the coefficients in the mean-reverting specification
overshoot their pre-shock value and then converge back to the initial steady state (i.e. in this exercise
also the terminal one) from above. What is the reason for this? The key to this observation is the
asset accumulation and decumulation behavior of agents subsequent the shocks. Under the perma-
nent credit shock, households with debt have to start deleverage their portfolios, thereby reducing
their nondurable consumption irrespective of their idiosyncratic shocks. With the credit limit at
its new and tighter level, household slowly increase their precautionary savings (i.e. accumulate
assets), and accept lower consumption insurance in the long run.

Under the mean-reverting credit shock, households realize that the economy will return to the
initial steady state. Hence, after six periods when the shock dissipates and the credit limit moves
back to its initial level, agents start decumulating assets and increase consumption (insurance).
Given that the supply of assets is fixed, the interest rate, and thus the (precautionary) savings be-
havior of households, is a mirror image of the consumption insurance coefficients - decreasing

13 When simulating I take into account two issues. First, the households in the artificial panel only "enter" the transition
once the simulation has converged and I draw from the stationary distribution in the initial steady state. Second, I always
choose the same sequence of shocks in all my numerical exercises using a fixed seed for the random number generator.
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Figure 3: Insurance coefficients over time
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Note. The values depict percentage deviations of the initial steady state and are filtered using a 1-D gaussian filter with
standard deviation (smoothing parameter) of 1.5.

under high accumulation of assets and vice versa. The dynamics of the interest rate and other
aggregates can be seen in Appendix C.

4.2 Exploring the mechanism

In what follows I will further explore two determinants of consumption smoothing behavior.
First, the position in the wealth distribution and second, the possibility to adjust labor supply.

Heterogenousdynamics along thewealth distribution The aggregate responses of the consump-
tion insurance coefficients masks heterogeneous responses along the wealth distribution. Figure 4
illustrates this for the persistent productivity shock under a permanent credit limit reduction. The
left panel shows the dynamics of the consumption insurance coefficients - in absolute terms - for the
bottom 10% and 25% of the initial steady state wealth distribution. The decrease in the insurance
coefficient is larger in both absolute and relative terms for the bottom 10%.

The right panel shows the dynamics of the consumption insurance coefficients for the top 10%
and 25%. We see that the coefficients increase; again, to a larger extent for the top 10%. Why is
this the case? Recall that the total amount of bonds available in the economy is unchanged dur-
ing transition. Hence, the deleveraging episode of net borrowers induces net lenders at the top
of the wealth distribution to sell some of their bond holdings. The additional resources facilitate
consumption insurance and the value increases.
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Figure 4: Insurance coefficients of persistent idiosyncratic shocks over time by wealth groups
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Note. This figure depicts the consumption insurance coefficients for the persistent idiosyncratic shock for different wealth
groups. The wealth groups are determined from the initial steady state distribution.

Comparing the bottom and top 10% (or 25%), however, the response of the former dominates in
magnitude, giving rise to a reduction of consumption insurance in the aggregate. This is a common
finding in the literature, that agents close to constraints (or close to kinks in their budget constraints)
drive aggregate behavior after shocks (Kaplan andViolante (2014); Guerrieri and Lorenzoni (2017)).

The quantitative relevance of endogenous labor supply In the benchmark economy households
can also choose to adjust their labor supply in response to idiosyncratic shocks. How much does
this margin contribute to the dynamics in the consumption insurance coefficients? To answer this
question, I set the labor supply exogenously to 1 when conducting my quantitative experiment and
recalibrate parameters to the same moments as in the benchmark case; both in the initial steady
state and over the transition.14

Figure 5 shows the dynamics subsequent the credit shock when the labor supply of households
is fixed. We see that removing the intensive margin of the labor supply decision "scales" the impact
on the insurance coefficients. That is, the dynamics are qualitatively similar to the benchmark case
but lower in magnitude. For instance, under the permanent credit shock, the consumption insur-
ance with respect to persistent productivity shocks drops by 5% - 3.5 percentage points more than
under the benchmark. Under the mean-reverting credit shock, the initial drop and the following
overshooting of the persistent insurance coefficient are - in absolute terms - 4 and 1.5 percentage

14 While it is possible to match the empirical moments in the initial steady state and the permanent credit shock pre-
cisely, the model has difficulties to match the autocorrelation in the mean-reverting case.
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Figure 5: Insurance coefficients over time with inelastic labor supply
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Note. The values depict percentage deviations of the initial steady state under fixed labor supply and are filtered using
a 1-D gaussian filter with standard deviation (smoothing parameter) of 1.5.

points higher, respectively.
Hence, these observations suggest that the possibility to adjust their labor supply is an im-

portant channel for households to insure their consumption in response to credit shocks. Note,
however, that this is particularly relevant for households close to the borrowing limit. As Guerri-
eri and Lorenzoni (2017) note, the labor supply response is heterogeneous. Households close to
the borrowing limit increase their labor supply, while households further away from it decrease it.
Since wealth levels are correlated with productivity, overall labor supply increases whereas output
decreases.

5 Conclusion

In this paper, I have studied the evolution of consumption insurance patterns in the economy
after unexpected credit shocks. I focused on two different shock specifications as observed in the
data: a mean-reverting credit shock following aggregate credit debt levels, and a permanent credit
shock following credit debt-to-GDP ratios in the data. I have shown that the evolution of consump-
tion insurance after both kind of shocks is similar in the short run, but differs in themedium run, as
accumulation/decumulation episodes of assets differ. Moreover, I have shown that the quantitative
effects are attenuated by endogenous labor supply, as households make use of the intensive mar-
gin to smooth consumption. Lastly, I have shown that the dynamics differ considerably by present
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wealth holdings, as households at the lower end of the wealth distribution experiencing the brunt
of the drop and households at the upper end actually increase their consumption insurance in re-
sponse to credit shocks.

I want to mention at least two potential areas for future research related to this topic. First, this
paper remains largely silent regarding other channels for insurance that are present in the data.
While the sample selection for the empirical exercise tried to account for this, especially public
insurance via taxes and transfers were still implicit in the model. A model that explicitly models
the tax structure in the United States as, for instance, Heathcote, Storesletten and Violante (2017),
would allow for a normative analysiswhether amore progressive taxationwould have beenwelfare
improving; especially for agents at the lower end of the wealth distribution.

Second, my calibration only considers unsecured credit card debt. A richer model with secured
debt, such as mortgages, could investigate the implication of decreasing collateral value for con-
sumption insurance. For instance, modelling secured credit based on a second illiquid asset (hous-
ing) as in Kaplan and Violante (2014) or Kaplan, Mitman and Violante (2020) would endogenously
give rise to a larger share of hand-to-mouth consumers consistent with the data (Kaplan, Violante
and Weidner, 2014), potentially amplifying the aggregate responses. Moreover, in this model one
would have to distinguish further between the type of credit that is affected by the shock.
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Appendix

A Estimation of the productivity process

The full process to be estimated separately for head and spouse is

log wm,t = ψm + κm,t + εm,t + νm,t,

κm,t = ρκm,t−1 + ζm,t,
(A.10)

where wm,t denotes the hourly wage of family member m ∈ {head, spouse} at year t relative to the
average hourly wage of all individuals at year t. This observed relative wage rate is the sum of an
individual permanent component ψm, a persistent component κ, which is an AR(1) process with
persistence ρ and innovation variance σ̃2

ζ , a temporary component ε with variance σ̃2
ε , and potential

measurement error ξ with variance σ̃2
ν .15 To estimate the counterparts for the entire household, and

to capture the productivity risk of a single consumption unit, I assume that both head and spouse
have the same ρ and that their idiosyncratic shocks are independent. I denote these variables with-
out a tilde. Moreover, since the measurement error cannot be separately identified from the tran-
sitory shock, I follow the literature and impose an external estimate for σ2

ν (Heathcote, Storesletten
and Violante (2010); Straub (2019)). In particular, I set σ2

ν = 0.02 as estimated by French (2004).
I now describe the strategy to estimate the relevant parameters (ρ, σ2

ζ , σ2
ε ) from family wage

residuals. The exposition largely follows Flodén and Lindé (2001) from whom I take the measure
for productivity.

Data I use the Panel Study of Income Dynamics (PSID) data from 2003 to 2007 to estimate the
parameters of interest. I choose this time horizon to be consistent with my overall calibration strat-
egy to target the pre-crisis conditions. The PSID is a longitudinal survey of a representative sample
of U.S. individuals and other members of their households. Since the PSID changed to a biennial
frequency in 1997, I am effectively using the three survey waves from 2003, 2005, and 2006. In gen-
eral, the questions on labor income and hours are retrospective. That is, survey questions from
2005 refer to the year 2004 etc. In addition to these standard questions, however, respondents are
also asked to provide information about income and labor supply two years before. Collecting this
information makes it possible to construct an annual panel of labor income and hours worked.

Until 2015, the PSID referred to the husband in a married couple as the Head of the household,
irrespective of employment status and labor income. To capture the full labor productivity of a
household, I include both Head andWife/"Wife"16 (if present) when estimating the stochastic pro-
cess. This is a better measure to use as it better describes the increase in resources a household has
if either of its members increases their labor supply.

15 Variables with a tilde denote family member variables.
16 Until 2015, the PSID uses the term Wife for married females and "Wife" for a cohabiting female. Starting with the

2015 wave, it changed its terminology to reference person for the head, and spouse or partner for the Wife and "Wife",
respectively. Going forward, I will use head and spouse.
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Sample selection I only look at households whose head or spouse follow the following criteria.
The individual (i) is from the main Survey Research Center (SRC) sample, (ii) is between 25 and 59
years old, (iii) provides information on years of education (iv) has positive working hours with a
maximum of 5840 (maximum possible value in the survey), (v) has an hourly wage rate more than
half the minimum wage (in 2002 dollars), (vi) does not have unreasonable income swings between
two years, and (vii) is observed in every year. Note that my sample selection applies these criteria
individually to both head and spouse within a family. That is, if some of these criteria do not apply
for the head, but do apply for the spouse, the latter is excluded in the sample, while the former is
included. Starting from the individual heads and spouses in the SRC sample, Table A.4 shows how
the selection process affects the total number of observations.

Table A.4: Sample selection in PSID

# dropped # remain

Initial sample (head and spouse) . . . 31,161
Age between 25 and 59 4,924 26,237
No Education information 2,505 23,732
Hours worked ≤ 0 or > 5840 79 23,653
Hourly wage < 0.5 min wage (2002$) 392 23,261
Wage fluctuations 876 22,385
Balanced panel 7850 14,535

Note. The initial sample already excludes the latino, the immigration as well as the SEO subsample. I look at PSID from
2002-2006, hence the final number of 14,535 amounts to 2,907 individuals observed over the entire time horizon. In total,
I observe 10,865 families.

Variable definitions
Annual labor income Thenotion of labor incomeused for estimation includeswages and salaries,

bonuses, overtime, tips, commissions, professional practice or trade, market gardening, farm in-
come, and unincorporated business income. All variables refer to pre-tax values. Post-tax values
are obtained by subtracting (labor income) taxes which are estimated with NBER’s TAXSIM pro-
gram.

Annual labor hours Total annual hours worked refers to self-reported hours worked in all jobs,
including overtime. Due to missing data for the years 2003 and 2005, I cannot add time spent in
unemployment or time spent away from work due to illness of the respondent or others to this
variable. Results in Flodén and Lindé (2001) suggest, however, that the parameter estimates are
largely unaffected by this omission.

Hourly earnings Hourly post-tax earnings (or post-tax hourly wage) are computed by dividing
post-tax annual labor income by annual labor hours.

Table A.5 provides summary statistics of the hourly wage rate and yearly labor earnings of the
final sample.
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Table A.5: Summary statistics for the primary sample, PSID 2002-2006

Year
Mean
age

Mean
wage

Median
wage

Var of
log(wage)

Mean
age

Mean
wage

Median
wage

Var of
log(wage)

Head Spouse

2002 40.93 20.28 16.19 0.35 29.58 15.83 13.64 0.27
2003 41.89 19.89 15.92 0.31 30.65 15.22 13.08 0.27
2004 42.89 21.44 17.00 0.33 31.40 16.76 14.48 0.27
2005 43.94 20.78 16.38 0.32 32.42 15.54 13.29 0.28
2006 44.93 22.45 17.58 0.34 33.19 17.48 14.80 0.28

Note. Wage variables are in 2002 dollars.

Estimation As Flodén and Lindé (2001), I refrain from modelling individual-specific intercepts
to capture the permanent component. Instead, it is assumed that permanent wage differences can
be captured by observed individual characteristics in 2002. These characteristics include age, com-
pleted education, occupation, sex, and race.17 That is, I estimate the following linear model using
OLS:

ln wm,2002 = β0 + β1agem + β2age2
m + β3sexm + β4educm + β5 ~occm + νm,2002, (A.11)

where age denotes the individual’s age, sexm is a dummy variable for the individual’s gender, educm

is years of completed education, and ~occm is a vector of 24 occupation dummies. The estimation
results are shown in Table A.6.

The predicted wage log ŵm,2002 ≡ ψ̂m is then used as an estimate for the permanent wage com-
ponent for all years t ∈ {2002, 2003, 2004, 2005, 2006} for head and spouse, respectively.

To isolate the residual within a household i, I sum the predicted values for all wage earners
within a family and subtract it from the observed total family wage, that is,

wres
i,t = log whead,t + log wspouse,t − (ψ̂head + ψ̂spouse).

The residual is essentially the stochastic part which captures all remaining productivity risk
once observable permanent components have been removed.18

With the family wage residuals at hand, I can estimate the parameters ρ, σ2
ζ , and σ2

ε from the

17 Education refers to years of completed schooling in 2002. The occupation variable captures 3-digit occupation codes
from the 2000 BLS census of population and housing. In total, 24 categories are then constructed based on all major
occupation profiles: https://www.bls.gov/oes/current/oes_stru.htm.

18 In particular, with the assumptions on the separate productivity processes of family members, we can write:

wres
i,t = κhead,t + κspouse,t︸ ︷︷ ︸

κi,t

+ εhead,t + εspouse,t︸ ︷︷ ︸
εi,t

+ νhead,t + νspouse,t︸ ︷︷ ︸
νi,t

,

where κi,t = ρκi,t−1 + ζi,t and variances (σ2
ζ , σ2

ε , σ2
ν ).
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Table A.6: OLS estimation for permanent relative wage component

Heads Spouses

age 0.067∗∗∗ 0.006
(0.013) (0.017)

age2

100 −0.068∗∗∗ −0.003
(0.018) (0.021)

sex 0.152∗∗∗ –
(0.039)

educ 0.074∗∗∗ 0.077∗∗∗

(0.007)

constant −2.625∗∗∗ −1.636∗∗∗

(0.365) (0.570)

F-test 0.000 0.000
Adj R2 0.235 0.284
N 1,919 988

Note. ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01. Occupation dummies are included in the regression, but are not presented
here. The sex variable is omitted in the specification for spouses as all observations are female.

following variance moment conditions for all t

var
(
wres

i,t
)
− var(κi,t)− var(εi,t)− var(νi,t) = 0

var
(
wres

i,t
)
−

σ2
ζ

1− ρ2 − σ2
ε − σ2

ν = 0,
(A.12)

where the second line follows from stationarity of κt. And from the following covariance moment
conditions for all t > s:

cov
(
wres

i,t , wres
i,s
)
− cov(κi,t, κi,s) = 0

cov
(
wres

i,t , wres
i,s
)
− ρt−s

σ2
ζ

1− ρ2 = 0,
(A.13)

where the first line already excludes covariance terms with εi,t and νi,t due to the independence
assumption.

In total I can construct 15 moments (five variance moments and ten covariance moments) to
estimate three parameters; that is, the system is overidentified. Therefore, I use the generalized
method of moments (GMM) to minimize the equally weighted distance19 between model and data
determined by the theoretical moment conditions in Equation (A.12) and Equation (A.13), and their
empirical counterparts.

19 Equal weights are motivated by the results of Altonji and Segal (1996) who show that in small samples the equally
weighted minimum distance estimator dominates the optimal distance estimator, especially when using higher than
first-order moments.
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Table A.7: GMM estimation results for the stochastic process

Parameter Estimate Standard Error

ρ 0.9368 0.0093
σ2

ζ̃
0.0294 0.0043

σ2
ε̃ 0.0670 0.0044

Note. This table shows the estimated parameters of a process for logwage/productivity residuals at an annual frequency.
Standard errors are block-bootstrapped with 500 iterations at the family/household level.

The GMM estimation results are shown in Table A.7.

Quarterly process A time period in the model is a quarter. Hence, I have to convert the estimates.
To match the parameters from the quarterly AR(1) process to the annual moments, I use the ex-
pression for the variance and autocovariance of the yearly average of a quarterly AR(1) process. To
illustrate this, take the following process z to represent a standard AR(1) process in quarterly terms,
where t denotes the 4th quarter and t− 3 is the 1st quarter of a given year:

zs = ρqzs−1 + εs ∀s ∈ {t, t− 1, t− 2, t− 3},

where I omit a constant as it does not affect either the variance or the covariance and ε is assumed
to be identically and independently distributed with variance σ2

ε . Furthermore, I assume that the
process is weakly stationary. Thus, the yearly average is given by z = 1

4 (zt + zt−1 + zt−2 + zt−3).
Given a zeromean and using that the unconditional variance of the quarterly AR(1) process is given
by σ2

ε

1−ρ2
q
, I can write the variance as

Var(z) = E[z2] =
1
42 E(zt + zt−1 + zt−2 + zt−3)

2

=
1
42 (4 + 6ρq + 4ρ2

q + 2ρ3
q)

σ2
ε

1− ρ2
q

(A.14)

where I used that

E[ztzt−h] = ρh
q E[z2

t−h] ∀h ∈ {1, 2, 3}
E[εtzs] = 0 for s ≤ t

By analogy, the autocovariance between two yearly averages, zt̃ and zt̃+1, is

Cov(zt̃zt̃+1) =
1
42 (ρq + 2ρ2

q + 3ρ3
q + 4ρ4

q + 3ρ5
q + 2ρ6

q + ρ7
q)

σ2
ε

1− ρ2
q

(A.15)

The yearly estimates from Table A.7 are 0.9368 for the autocorrelation and 0.0294 for the con-
ditional variance. Hence, I choose the quarterly parameters to match the yearly unconditional
variance, 0.0294

1−0.93682 , for Equation (A.14) and the yearly autocovariance, 0.9368 · 0.0294
1−0.93682 , for Equa-
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tion (A.15). This yields a quarterly autocorrelation of ρq = 0.976 and a quarterly variance of
σ2

q,ζ = 0.012. The last term to pin down is the quarterly variance of the transitory component,
σ2

q,ε. To do so, I solve σ2
q,ε/σ2

q,κ = σ2
ε /σ2

κ . In other words, the relative contribution of the transitory
component on a quarterly frequency is the same as on a yearly frequency.

B Hodrick-Prescott Filter on Credit Card Balances

Denote by yt the aggregate credit card balance in the United States, the variable of interest. To
isolate the short-run or cyclical component, I apply a standard Hodrick-Prescott filter:

min
{gt}

(
T

∑
t=1

c2
t + λ

T−1

∑
t=2

[(gt+1 − gt)− (gt − gt−1)]
2

)
,

where ct = yt − gt denotes the cyclical part, and gt is the trend component. Figure B.6 shows the
extracted trend component (Panel (a)) and the extracted cyclical component (Panel (b)). The episode
prior to the great financial crisis is clearly visible when aggregate credit balances were substantially
above the trend level.

Another common specification is to take the logarithm of yt, as then (gt+1− gt) is a growth rate
and, hence, the second part can be interpreted as the change in trend growth (Hodrick and Prescott
(1997)). I will look at both in my estimation.

The empirical moment I want to match with the model is the autocorrelation in the cyclical
component. Hence, I estimate an AR(1) and target the coefficient on the lag. The results are shown
in Table B.8. We see that the two coefficients are similar inmagnitude and do not differ significantly.
For my quantitative exercise I will target the coefficient in levels.

Table B.8: Autocorrelation in cyclical component

Level Log

Lag 0.841 0.829
(0.064) (0.063)

Observations 67 67
R-squared 0.70 0.68

Note. This table lists the OLS estimates of the AR(1) process on the cyclical component of the aggregate credit card
balances. The "Level/Log" specification refers to whether the Hodrick-Prescott filter was applied in levels or logs.
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Figure B.6: Hodrick-Prescott Filter on Credit Card Balances

C Additional results

Figure C.7 shows the responses of the interest rate, labor supply, and output, respectively, for
both credit shock specifications. The permanent credit shock specification replicate qualitatively
the results by Guerrieri and Lorenzoni (2017). The mean-reverting specification shows the oppos-
ing dynamics in the short and medim term, as discussed in the main text.
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Figure C.7: Interest rate, labor supply, and output during the transition
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Note. This figure shows the responses of the interest rate, labor supply, and output, respectively, for the permanent and
mean-reverting credit shock specification. The interest rate is annualized, whereas aggreate labor supply and output are
in percentage deviations from the initial steady state.

D Steady state optimization and stationary recursive equilibrium

In this section, I first state the household problem in the steady states in recursive form. Second,
I define the stationary recursive competitive equilibrium. The main difference to the transitional
equilibrium definition in the main text is that the value function, policy functions, the interest rate
and government policies are not indexed by Φ; recall that the time subscript implicitly took care of
this in Definition 1. The reason is that all conditions have to be satisfied only for the equilibrium
measure Φ, which reproduces itself — it is stationary.

Recursive Problem

V(b, θ; Φ) = max
c,n,b′

[
U(c, n) + βE[V(b′, θ′; Φ′)]

]
s.t.

q(Φ)b′ + c ≤ b + y− τ(Φ)

b′ ≥ −φ

Φ′ = H(Φ),

(D.16)

where H(Φ) is the law of motion generated by the Markov process governed by Γ and the optimal
policy functions of the household.

Denote the set of all probabilitymeasures on themeasurable space (S, Σs) byM. The stationary
recursive equilibrium is summarized in the following definition.
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Definition 2. A stationary recursive competitive equilibrium is a value function V : S → R,
policy functions for the household C : S → R and N : S → R, future bond holdings b′, an interest
rate r, government policies τ̃ and a measure Φ ∈ M such that

i) V, C, N are measurable with respect to Σs, V satisfies the optimization problem of the house-
hold, Equation (D.16), and C, N are the associated policy functions, given r and τ.

ii) The government budget constraint is satisfied

τ =
rB

1 + r

iii) The asset market clears ∫
(A×Θ)

b′(b, θ)dΦ = B

iv) For all S ∈ Σs

Φ(S) =
∫
(A×Θ)

Q((b, θ),S)dΦ,

that is, the probability measure reproduces itself.

Again, the goods-market clearing condition is redundant by Walras law and thus omitted.

E Computational Details

E.1 Numerical Algorithm - Steady State

I describe now how I compute the policy functions and the invariant distribution for the initial
and terminal steady states.

Policy Functions To obtain the policy functions, I employ the endogenous gridmethod by Carroll
(2006).

1. I construct a grid on (b, θ)where b ∈ Gb = {b1, . . . ,−φ, . . . , 0, . . . , bN} and θ ∈ Θ = {θ1, . . . , θ13}

2. I guess an initial policy function Ĉ0(bi, θj) = max{cmin, r · bi} where cmin is a pre-specified
minimum consumption level.

3. Iterate over pairs {b′i , θj} in this and the next step. Fix θj and iterate over all grid values of b′i .
For any pair {b′i , θj} on the mesh Gb ×Θ where the borrowing limit is not binding, construct

C̃(b′i , θj) =

[
β(1 + r) ∑

θ′∈Θ
π(θ′|θj)Ĉ0(b′i , θ′)−γ

]− 1
γ

,
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which is the Euler equation solved for consumption using my utility specification. π(θ′|θj)

denotes the probability of being type θ′ tomorrow conditional on being θj today. Similarly, I
solve for optimal labor supply and construct

Ñ(b′i , θj) = max

0, 1−
[

θjC̃(b′i , θj)
−γ

ψ

]− 1
η


where I use the consumption level from the consumption policy function above. If the bor-
rowing limit is binding, I cannot use the Euler equation. Hence, I set the consumption level to
cmin to calculate optimal labor supply nmin from the condition above. Using nmin, I compute
the level of consumption, c∗, that solves

0 = −φ− −φ

1 + r
− c∗ + θjnmin − τ̃.

This is the lowest consumption level that is generated by the consumption policy function.
The consumption area between this level and the lowest consumption level where the con-
straint is not binding, is then generated by computing an evenly sized grid between these
two points. Subsequently, labor supply for constrained households is computed identically
as above, using the newly obtained consumption levels. Do this for all θj ∈ Θ.

These two approaches combined yield the policy function for consumption and labor supply,
respectively, in any given iteration.

4. From the budget constraint, I solve for the value of assets today, b†(b′i , θj). For unconstrained
agents, this is

b†(b′i , θj) =
b′i

1 + r
+ C̃(b′i , θj)− θj · Ñ(b′i , θj) + τ.

For constrained agents, I replace b′i with −φ. This implies that asset holdings of b†(b′i , θj)

and an idiosyncratic shock of θj today would lead the agent to hold b′i assets tomorrow. The
function b†(b′i , θj) is not defined on the grid Gb and changes every iteration, i.e. endogenous
grid. This is also important when I compute the invariant distribution.

5. Update the guess of the consumption policy function. To obtain a new guess Ĉ1(bi, θj) I lin-
early inter-and extrapolate the values for {C̃(b†

n, θj), C̃(b†
n+1, θj)} on the two most adjacent

values {b†
n, b†

n+1} that enclose the given grid point bi. If some grid point values bi are beyond
b†

N , I extrapolate to obtain the new guess. After I obtained all new guesses, I impose the lower
bound of cmin.

6. I declare convergence when

max
i,j
|Ĉn+1(bi, θj)− Ĉn(bi, θj)| < ε,
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for some small ε and where Ĉn(bi, θj) denotes the consumption policy in the n’th iteration. If
convergence has not been achieved, repeat steps 3-5 using the latest guess of the consumption
policy function and check convergence again.

Invariant Distribution

1. Assign weights for all possible bond holding values generated by the policy functions above
that are proportional to the distance of the two most adjacent grid point values. For instance,
let the current bond holdings be b† and let {bn−1, bn} be the two most adjacent grid point
values that enclose these bond holdings. The weight ζ† is then computed as

ζ† =
b† − bn−1

bn − bn−1
.

If current bondholdings are above (below) the highest (lowest) grid point value, set theweight
for the highest (lowest) grid point equal to 1.

2. The initial guess for the initial distribution Φ(0)(b|θ) is the uniform distribution.

3. Fix θj and and compute the distribution as follows:

Φ(1)(bn−1|θj) = ∑
θ′∈Θ

(1− ζ)π(θ′|θj)Φ(0)(bn−1|θj)

Φ(1)(bn|θj) = ∑
θ′∈Θ

ζπ(θ′|θj)Φ(0)(bn|θj),

where ζ denotes the particular weight for the bond holding that is enclosed by the grid points
{bn−1, bn}. The weights adjust for the transition of off-grid values to values on the grid: when
bond holdings are close to, say, bn, the distribution Φ(1)(bn|θ) gets a higher weight. Further-
more, the distribution Φ(k)(bn|θj) is affected by the probability of being type θ′ tomorrow
conditional on being θj today, denoted by π(θ′|θj), and the current mass at particular bond
holdings conditional on being type θj, Φ(k−1)(bn|θj).

Repeat this for all θj ∈ Θ, bn ∈ Gb and sum the distributions to get Φ(k)(b|θ).

4. I check convergence by computing

|Φ(k)(b|θ)−Φ(k−1)(b|θ)| < ε,

for some small ε and where Φ(k)(b|θ) denotes the distribution in the k’th iteration. If conver-
gence has not been achieved, repeat step 3 using the latest guess of the distribution and check
convergence again.
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E.2 Numerical Algorithm - Transition

I describe now how I compute the transition path for interest rates. Essentially, the algorithm
iterates backward over the policy functions starting from the terminal steady state to obtain a se-
quence of policy functions. Subsequently, with the sequence of policy functions at hand, iterate
the distributions forward starting from the stationary distribution in the initial steady state. This
backward-forward iteration to obtain general equilibrium time paths of aggregate prices (and vari-
ables) has been employed by several recent articles, for instance, Guerrieri and Lorenzoni (2017) or
Auclert and Rognlie (2020)

The economy at t = 0 is at the steady state with stationary distribution Φ over assets and pro-
ductivity types. At the end of period t = 0, an unexpected credit crunch hits the economy that
reduces the borrowing limit φt. I assume that the economy converges to the new terminal steady
state after T periods, for T arbitrarily large but finite. The assumption on T allows us to solve the
household problem by backward induction. To compute the equilibrium interest rate path, I follow
these steps:

1. I set T = 100.

2. I specify the sequence of borrowing limits {φt}T
t=1 where the borrowing limit from the termi-

nal steady state is obtained after 6 periods.

3. I compute the policy functions of the initial and terminal steady state using the algorithm in
Appendix E.1

4. I guess an initial interest rate path of length T such that rt = rT ∀t > 1, i.e. the sequence of
interest rates equals the interest rate in the terminal steady state.

5. Since ĈT(b, θ) equals the consumption policy function from the terminal steady state, I can
solve the householdproblembybackward induction andderive {Ĉt(b, θ)}T−1

t=1 and {N̂t(b, θ)}T−1
t=1

using the endogenous grid method as outlined above. For every t, I use the corresponding
interest rate and borrowing limit from the specified sequences. Again, bond holdings can be
computed via the budget constraint.

6. Iterate the bonddistribution forward starting from the initial steady state distribution at t = 1.
Compute the aggregates, i.e. output, consumption, labor supply, and household bond de-
mand, at time t, using the time t policy functions from the previous step.

7. For every iteration, I check bond market clearing for convergence:√
〈(Bdem − B), (Bdem − B)〉

T
< ε, (E.17)

for a small ε andwhere Bdem denotes the aggregate bonddemand vector of length T, B denotes
the bond supply vector of length T, and 〈·, ·〉 denotes the inner product.
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8. If inequality Equation (E.17) is not satisfied for any iteration k, I update the interest rate path
for next iteration, r(k+1), based on bond market clearing with the following linear updating
rule

r(k+1) = rk − ε(B(k)
dem − B),

where Bk
dem denotes aggregate bond demand at iteration k and B denotes bond supply. ε

are exponentially decaying weights, i.e. divergences in the bond markets at time periods
closer to the credit crunch get a higher weight. Note that r(k+1), rk, ε, B(k)

dem, andB are vectors of
length T representing the whole path. Repeat steps 5-8 using the new interest rate path until
convergence is achieved.
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